好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

《仪器分析》第十四章-分子发光光谱法.ppt

51页
  • 卖家[上传人]:xian****812
  • 文档编号:291197780
  • 上传时间:2022-05-11
  • 文档格式:PPT
  • 文档大小:1.09MB
  • / 51 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 分子发光光谱法分子发光光谱法基本要求:1.理解分子荧光和分子磷光的基本原理2.理解分子荧光激发光谱、发射光谱、同步光谱和三维荧光光谱的含义3.掌握分子荧光发射光谱的特性4.了解荧光光谱仪的组成和各部分作用5.掌握荧光分析法和磷光分析法的主要应用范围6.了解化学发光分析法的原理和应用分子发光光谱法包括:p光致发光分子荧光分子磷光p化学发光p生物发光灵敏度较紫外-可见吸收光谱法高几个数量级1 1 荧光和磷光的基本机理荧光和磷光的基本机理分子荧光与磷光的产生:01230123012S101240123S0S2T1T2内转换外转换振动驰豫系间跨越1234吸收吸收荧光磷光p 对于大多数有机物分子,其电子数为偶数,净自旋 之 和 为 S 0, 即 基 态 分 子 为 单 重 态 ( M2S+1=1)p 分子处于激发态时,某个电子可能会改变自旋方向,即自旋平行,此时S1/2+1/2=1,分子处于这样的激发态为三重态,以T表示由于自旋平行比自旋配对的状态更稳定,因此三重态能级比单重态略低p 根据光谱选律,分子直接被激发到三重态T1的概率比较小,因为是S0T1禁阻跃迁分子的去激发过程 速率最快,激发态寿命最短的途径占优势。

      p振动驰豫受激溶质分子向溶剂分子转移过剩的能量,以10-13s10-11s的极快速度p荧光发射以10-9s10-7s左右的短时间内发射光量子回到基态的各振动能级p内部转换激发能转化为热能其速度取决于此过程所包含的两个能态之间的相对能量差当两个电子能级非常靠近,以至其振动能级有重叠时,内部转换十分容易发生如两个单重激发态或两个三重激发态的较低激发态的高振动能级常常与较高激发态的低振动能级重叠,重叠的地方两激发态能量一致,内部转换效率很高,速率很快,一般只需要10-13s10-11s的时间p外转换激发态分子与溶剂和其它溶质分子之间的相互作用即能量转换过程它是荧光和磷光的竞争过程,因此该过程使发光强度减弱甚至消失,这种现象称为“淬灭”或“熄灭”p体系间跨越跃迁受激分子从激发单重态转至能量较低的激发三重态这一过程中分子的电子自旋倒转,多重性发生变化与内部转换一样,如果两能态的振动能级重叠,这种跃迁的概率增大p磷光发射经过系间跨越后到达激发三重态,并经过迅速的振动驰豫到达第一激发三重态(T1)的最低振动能级上,从T1态分子经发射光返回基态称为磷光发射磷光发射属于不同多重态之间的跃迁( T1 S0 ),是“禁阻”跃迁,因此磷光的寿命比荧光长得多,约为10-3s10s。

      由于分子结构和所处环境不同,各去激发过程的速率不同如荧光发射过程较其它过程快,则可观察到荧光现象荧光的量子效率 发荧光的分子数与总的激发态分子数之比Kf荧光发射过程速率常数,主要取决于分子结构;Ki系间跨越、外转换等其他无辐射跃迁的速率常数的总和,主要取决于环境荧光激发光谱和发射光谱荧光激发光谱固定发射波长,扫描激发波长得到的荧光强度激发波长的关系曲线,反映了在某一固定发射波长下,不同激发波长激发的荧光的相对效率激发光谱用于进行荧光测定时选择恰当的激发波长荧光发射光谱固定激发波长,扫描发射波长得到的荧光强度发射波长的关系曲线,反映了在某一固定激发波长下,不同波长处分子的相对发射强度荧光光谱用于进行荧光测定时选择恰当的测定波长或滤光片同步荧光光谱同时扫描激发和发射单色器波长的条件下,测绘光谱图,所得荧光强度-激发波长(或发射波长)曲线为同步荧光光谱 固定波长同步扫描荧光法:= em -ex不变 固定能量同步扫描荧光法:= (1/ex -1/em)不变 可变波长同步扫描荧光法:两个单色器以不同的速率扫描特点:光谱简化,谱带窄化,减小光谱重叠,减小散射光的影响,选择性提高,但损失其他光谱带含有的信息并四苯的激发光谱和发射光谱(a)同步荧光光谱=3nm(b)三维荧光光谱20世纪80年代发展起来,以荧光强度为激发波长和发射波长的函数得到的光谱图,也称为总发光光谱,等高线光谱等。

      三维曲线光谱图 平面显示的等强度线光谱图特点:提高完整的光谱信息,可作为光谱指纹技术用于环境检测和法庭试样的判证a)蒽和萘的三维荧光光谱图(b)8-羟基苯芘的等强度光谱图荧光光谱的特征斯托克斯(Stokes)位移:在溶液中,荧光发射波长总是比其相应的吸收(激发)光谱的波长长,该现象是1852年由Stokes发现,因此称为Stokes位移这种位移反映了荧光激发与发射间产生的能量损失(来源于振动驰豫和溶剂的分子的驰豫作用)镜像对称规则:吸收光谱形状表明了第一激发态的振动能级结构,荧光光谱形状取决于基态中各振动能级的分布情况一般基态中振动能级与第一激发态振动能级分布是类似的,因此荧光光谱的形状和吸收光谱极为相似苝的苯溶液的荧光光谱和吸收光谱荧光光谱的特征荧光发射光谱的形状与激发波长的选择无关: 荧光物质发射荧光的特性之一是不管引起物质分子激发的波长是1还是2,荧光的波长都是3 这是由于荧光分子无论被激发到哪一个激发态,处于激发态的分子经振动驰豫即内转换等过程最终回到第一激发态的最低振动能级上,而分子荧光的发射总是从该能级跃迁到基态的各振动能级上,因此其形状与激发波长无关 反映在光谱图上就是具有一个吸收带和两个吸收带的不同物质,一般都发射一个荧光谱带(个别例外)。

      p分子结构n 跃迁类型:*量子效率高,因为跃迁摩尔吸光系数大100-1000倍,跃迁寿命短(10-710-9s),n*(10-710-9s),其次,系间跨越速率常数小n 共轭效应:稠环化合物一般发强荧光n 取代基效应:给电子基团(-NH2, -OH, -OCH3, -NHCH3, -N(CH3)2等)荧光增强,吸电子基团(-Cl, -Br, -I, -NHCOCH3, -NO2, -COOH等)荧光减弱n 结构刚性效应:平面刚性结构有利于荧光发射, 荧光物质吸附于固体表面可荧光增强影响荧光强度的因素COHHOOCOCOHHOOCOO酚酞,无荧光荧光素,强荧光氧桥键具有刚性平面结构单键易旋转,非刚性平面结构p环境因素n 溶剂:介电常数、折射率、氢键,极性增加,*跃迁能量减小,荧光红移n 温度:温度高,碰撞频率增加,荧光效率下降n pH:酸性或碱性荧光物质影响大n 荧光猝灭:与溶剂或其他分子作用,荧光减弱称为猝灭;引起荧光强度减弱的试剂称为猝灭剂动态猝灭(碰撞)静态猝灭(形成不发荧光化合物)n 内滤作用:溶液中存在吸收激发光或发射光的物质,导致荧光减弱,称为内滤(自吸是一种内滤)影响荧光强度的因素2-苯胺-6-萘磺酸的荧光发射光谱A 乙腈 B 乙二醇 C 30%乙醇-水 D 水8羟基喹啉在不同溶剂中的荧光表现溶剂溶剂介电常数介电常数荧光峰荧光峰/nm荧光效率荧光效率四氯化碳四氯化碳2.243900.002氯仿氯仿5.23980.041丙酮丙酮21.54050.055乙腈乙腈38.84100.064但是也有相反的情况,例如苯胺萘磺酸一类的化合物在戊醇、丁醇、丙醇、乙醇和甲醇五种不同的醇溶液中,随着溶剂极性增大,荧光效率减小。

      由此可见,荧光峰的位置和强度与溶剂的关系,规律性不强,必须具体分子具体分析荧光强度-168C-150C-78C 24C菲绕啉在联二苯中不同温度时的荧光光谱较高的温度下,热运动加快,溶质分子与溶剂分子之间的碰撞机会增大,荧光效率下降NH3+NH2NH-pH 13无荧光 蓝色荧光 无荧光 金属离子与有机试剂形成的荧光配合物,受pH的影响更大一方面影响配合物的稳定性,一方面影响配合物的组成 例如,镓离子与邻二羟基偶氮苯在pH34溶液中形成1:1配合物,发荧光在pH67溶液中则形成1:2配合物,不发荧光( 1:2 型平面结构不存在) 散射光和拉曼光对荧光分析的影响a)溶剂的瑞利散射光b)容器表面的散射光c)胶粒的散射光d)溶剂的拉曼光瑞利散射光溶剂分子吸收了频率较低的光线后,不足以使分子中的电子跃迁到激发态,而只是上升到基态中较高的振动能级,并在极短的时间内返回原能级,释放与原激发光波长相同的光线,称为瑞利散射光没有能量损失,而且在所有波长发生,波长越短,瑞利散射光强度越大拉曼散射光和瑞利散射有关的另一种形式的散射光它是由分子吸收了频率较低的光上升到基态中较高的振动能级后,返回到稍高于或稍低于原来的能级时发射的光,其波长较激发光波长稍长或者稍短。

      一般说来,拉曼散射光比瑞利散射光弱320320360360450450640640720720 (nmnm)荧荧光光强强度度硫酸奎宁水溶液在320nm光激发下荧光光谱中的各类型散射峰除了荧光峰之外,都会在空白试验中出现因此,当荧光物质的荧光峰与激发光波长靠近甚至重叠时,散射光会严重影响方法的灵敏度,应设法减小或消除此影响在测定前,先测空白溶液的发射光谱,然后选择合适的激发波长溶剂的散射光随激发波长变化而变化,而荧光峰与激发波长无关,这样通过改变激发波长即可消除散射的影响320nm是一级瑞利散射光,640nm是二级瑞利散射光,450nm为荧光峰,360nm为水的一级拉曼光,720nm为水的二级拉曼光2 2 分子荧光光谱仪分子荧光光谱仪光源光源入射狭缝入射狭缝激发激发单色器单色器出射狭缝出射狭缝样品池样品池发射发射单色器单色器入射狭缝入射狭缝出射狭缝出射狭缝信号输信号输出装置出装置检测器检测器放大器放大器 光源氙灯和高压汞灯、激光器 单色器激发单色器和发射单色器 样品池四面透光的方形石英池 检测器光电倍增管、电荷偶合元件检测器可一次获得荧光二维光谱3 3 分子荧光光谱的应用分子荧光光谱的应用 灵敏度高,检测下限低0.10.001g/cm3,荧光分析法的应用广泛,可测定60余种元素,尤其是生物大分子的检测,还可以作为高效液相色谱及毛细管电泳的检测器。

      定量分析:FIaIaI0ItI0(110-bc) I0 (1e-2.303bc) 对于很稀的溶液,即bc 0.05,此时上面的式子中第二项以后的各项可以忽略不计,即1e-2.303bc 2.303bcIf Ia I0 2.303bc因此,当激发光强度一定,并且溶液浓度较小时,荧光强度与荧光物质浓度之间成正比:If Kc对于较浓的溶液,其吸光度大于0.05时,荧光强度与浓度的线性关系将出现偏离q 单组分直接测定q 单组分间接测定 化学反应转化为荧光分子 荧光猝灭法q 多组分的荧光测定 荧光峰不重叠,选不同的发射波长;激发光谱明显不同,荧光峰重叠,可选用不同的激发波长q 无机物分析:无机阳离子本身不发荧光,可与一些有机试剂形成荧光配合物,可以测定的元素已达60多种q 溶液单分子行为研究:罗丹明6G标记DNAq 基因研究与检测:DNA与小分子的相互作用等q 生物化学和生理医学:能测定微量氨基酸和蛋白质,还能研究蛋白质的结构,酶以及酶动力学和机理,细胞新陈代谢等q 药物分析:分析低浓度的药物,6巯基嘌呤是急性白血病的重要药剂,相关分析方法还较少用高锰酸钾将6巯基嘌呤氧化形成嘌呤6磺酸盐,即可用荧光法进行测定4 4 磷光光谱法磷光光谱法q激发单重态与激发三重态振动能级重叠时,发生系间跨越,从激发单重态转到能量较低的三重态,迅速振动驰豫到三重态最低振动能级,在10-4秒至几秒内发射磷光回到基态。

      q磷光和荧光都是光致发光, 同样具有两个特征光谱,即磷光激发光谱和发射光谱q当激发光强度一定和被测物质浓度很低时,发射的磷光强度与浓度成正比q三重态与基态间的能量差小,振动耦合强,增强了内部转换,非辐射跃迁的竞争大q激发三重态的寿命长,同溶剂分子或其它溶质分子碰撞概率大,在室温下很少观察到磷光现象将温度降低至液氮温度(77K),许多介质均形成刚性玻璃体,碰撞和振动耦合降至最低限度,几乎所有三重态得激发分子都会发出磷光q室温磷光:试样固定在固体基体上、溶解在胶束溶液或环糊精溶液中,增强刚性,减少碰撞猝灭试样管盛液氮的杜瓦瓶至发射单色器来自激发单色器磷光分析仪 测定磷光的仪器与荧光仪器基本相同但为了在低温下测定,样品试液的石英管必须放在盛液氮的杜瓦瓶中因为发磷光的物。

      点击阅读更多内容
      相关文档
      2025年中考数学总复习习题:7.2 投影与视图.docx 2025年中考数学总复习习题:4.3 全等三角形.docx 2025年中考数学总复习习题:2.2 分式方程.docx 2025年中考数学总复习微专题 第二章 结合传统数学文化考查一次方程(组)的实际应用.docx 2025年中考数学总复习课件:考点知识梳理 2.2 分式方程.pptx 2025年中考数学总复习考点知识梳理 8.1 统计.docx 2025年中考数学总复习考点知识梳理 5.2 第3课时 正方形.docx 2025年中考数学总复习习题:6.3 与圆有关的计算.docx 2025年中考数学总复习习题:1.4 二次根式.docx 四年级下册数学课件-平均数3-北京版 (共15张PPT).ppt 四年级下册数学课件-鸡兔同笼人教新课标(共20 张ppt).pptx 四年级下册数学课件-第三单元 三位数乘两位数 第2课时常见的数量关系|苏教版|苏教版 (共9张PPT).ppt 四年级下册数学课件-第六单元 运算律 第8课时 相遇问题|苏教版 (共8张PPT).ppt 2025年中考数学总复习考点知识梳理 3.4 第2课时 二次函数性质的综合应用.docx 2025年中考数学总复习考点知识梳理 2.1 一次方程(组).docx 2025年中考数学一轮复习专题15 与圆有关的位置关系(3大模块知识梳理+9个考点+5个重难点+1个易错点)(原卷版).docx -四年级下册数学课件-平均数2-北京版 (共13张PPT).ppt 四年级下册数学课件-利用平移解决问题-人教新课标.ppt 四年级下册数学课件-第一单元1.4解决问题 人教新课标(共12张PPT).pptx 四年级下册数学课件-第三单元 小数乘法 第3课时 街心广场|北师大版 (共13张PPT).ppt
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.