好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

陕西省咸阳市扶风中学2020年高二数学文月考试题含解析.docx

14页
  • 卖家[上传人]:Mr****ng
  • 文档编号:244591414
  • 上传时间:2022-01-23
  • 文档格式:DOCX
  • 文档大小:371.05KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 陕西省咸阳市扶风中学2020年高二数学文月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 设函数()满足,,则函数的图像可能是(     )                                                                                                            参考答案:B 2. 今有2个红球、2个黄球、3个白球,同色球不加以区分,将这7个球排成一列的不同方法有A. 210种 B. 162种 C. 720种 D. 840种参考答案:A【分析】先在7个位置中选3个位置排白球,有种排法,再从剩余的4个位置中选2个位置排红球,有种排法,剩余的2个位置排黄球有种排法,由乘法原理可得答案.【详解】解:由题意可知,因同色球不加以区分,实际上是一个组合问题.先在7位置中选3个位置排白球,有种排法,再从剩余的4个位置中选2个位置排红球,有种排法,剩余的2个位置排黄球有种排法,所以共有??=210.故选:A【点睛】本题考查排列组合的基本知识.分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法.3. 若抛物线y2=4x的焦点是F,准线是l,点M(1,2)是抛物线上一点,则经过点F、M且与l相切的圆一共有A.0个        B.1个      C.2个       D.4个参考答案:D略4. 如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的(  )A.c>x B.x>a C.c>b D.b>c参考答案:A【考点】程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.5. 已知A(1,2,﹣1)关于面xoy的对称点为B,而B关于x轴对称的点为C,则=(  )A.(0,4,2) B.(0,﹣4,﹣2) C.(0,4,0) D.(2,0,﹣2)参考答案: B【考点】空间中的点的坐标.【分析】写出点A关于面xoy的对称点B的坐标,横标和纵标都不变化,只有竖标变为原来的相反数,再写出B关于横轴的对称点,根据两个点的坐标写出向量的坐标.【解答】解:∵A(1,2,﹣1)关于面xoy的对称点为B,∴根据关于面xoy的对称点的特点得到B(1,2,1)而B关于x轴对称的点为C,∴C点的坐标是(1,﹣2,﹣1)∴=(0,﹣4,﹣2)故选B.【点评】本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.6.  参考答案:A7. 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(  )A. B. C. D.参考答案:B【考点】C9:相互独立事件的概率乘法公式.【分析】利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.【解答】解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.故选:B.8. 双曲线(a>0,b>0)的两个焦点为F1、F2, 若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为A、(1,3) B、 C、(3,+)     D、参考答案:B9. 过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是(    )A.28             B.22 C.14 D.12 参考答案:A10. 已知数列{an}是等差数列a2+a8=16,a4=6,则a6=?    A.7        B.8        C.10       D.12参考答案:C略二、 填空题:本大题共7小题,每小题4分,共28分11. 在的二项展开式中,的系数为_____参考答案:-84【分析】先求出展开式的通项公式为,再令的幂指数等于3求出的值,即可求得的系数.【详解】二项式的展开式的通项公式为.令,解得,展开式中的系数为,故答案为:-84【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12. 若是一组基底,向量,则称为向量在基底下的坐标,现已知向量在基底下的坐标为,则在另一组基底下的坐标为                 。

      参考答案:13. 在极坐标系中,圆心为(2,)且过极点的圆的极坐标方程为 __________________参考答案:略14. 设△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为,则__________.参考答案:由余弦定理得,,又,联立两式得,,.15. 将一枚骰子先后抛掷2次,观察向上的点数,则“点数之和等于6”的概率为         .参考答案:  16. 若点的坐标是,为抛物线的焦点,点在抛物线上移动时,的最小值为 ______参考答案:17. 下列事件:①对任意实数x,有x2<0;②三角形的内角和是180°;③骑车到十字路口遇到红灯;④某人购买福利彩票中奖;其中是随机事件的为__________. 参考答案:③④三、 解答题:本大题共5小题,共72分解答应写出文字说明,证明过程或演算步骤18. (12分)如图,椭圆C0: +=1(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a..点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.(1)若C1经过C0的焦点,且C0离心率为,求∠DOC的大小;(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若t12+t22=a2+b2,证明:矩形ABCD与矩形A′B′C′D′的面积相等.参考答案:【考点】椭圆的简单性质;直线与椭圆的位置关系.【分析】(1)设∠DF1F2=θ,则DF2=2csinθ,DF1=2ccosθ,利用|DF1|+|DF2|=2a,得到2ccosθ+2csinθ=2a,然后求解∠DOC=.(2)设,矩形ABCD与矩形A′B′C′D′的面积分别为S,S′,则代入圆的方程,求出面积的表达式,利用t12+t22=a2+b2,推出,然后推出S=S′,即可得到矩形ABCD与矩形A′B′C′D′的面积相等.【解答】解:(1)设∠DF1F2=θ,则DF2=2csinθ,DF1=2ccosθ…(1分)∵|DF1|+|DF2|=2a∴2ccosθ+2csinθ=2a…(2分)即…依题意,,得∴…故∠DOC=.…(2)设,矩形ABCD与矩形A′B′C′D′的面积分别为S,S′则,…(6分)∵,∴…(7分)又,,∴…(8分)即,∴,∵a≠b∴,即…(9分)∴…(10分)==…(11分)==0,∴S=S′,即矩形ABCD与矩形A′B′C′D′的面积相等.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,整体代入以及转化思想的应用,考查计算能力.19. 如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.(Ⅰ)证明:∠ADE=∠AED;(Ⅱ)若AC=AP,求的值.参考答案:【考点】弦切角;相似三角形的性质.【分析】(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;(Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得.利用直角三角形中正切的定义,得到,最后通过内角相等证明出△APC∽△BPA,从而.【解答】解:(Ⅰ)∵PA是切线,AB是弦,∴∠BAP=∠C.又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED.…(Ⅱ) 由(Ⅰ)知∠BAP=∠C,∵∠APC=∠BPA,∵AC=AP,∴∠APC=∠C∴∠APC=∠C=∠BAP.由三角形内角和定理可知,∠APC+∠C+∠CAP=180°.∵BC是圆O的直径,∴∠BAC=90°.∴∠APC+∠C+∠BAP=180°﹣90°=90°.∴.在Rt△ABC中,,即,∴.∵在△APC与△BPA中∠BAP=∠C,∠APB=∠CPA,∴△APC∽△BPA.∴.∴.   …20. 如图,在三棱锥ABCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥DABC的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LX:直线与平面垂直的性质.【分析】(1)设BD的中点为O,连接AO,EO,证明AO⊥BD.推出EO⊥BD.证明BD⊥平面AOE.即可证明AE⊥BD.(2)由已知得三棱锥DABC与CABD的体积相等.转化求解S△ABD,求出三棱锥CABD的体积,即可求解三棱锥DABC的体积.【解答】解:(1)证明:设BD的中点为O,连接AO,EO,∵AB=AD,∴AO⊥BD.又E为BC的中点,∴EO∥CD.∵CD⊥BD,∴EO⊥BD.又OA∩OE=O,∴BD⊥平面AOE.又AE?平面AOE,∴AE⊥BD.(2)由已知得三棱锥DABC与CABD的体积相等.∵CD⊥BD,平面ABD⊥平面BCD,∴CD⊥平面ABD,BD==2.由已知得S△ABD=×BD×=.∴三棱锥CABD的体积VCABD=×CD×S△ABD=.∴三棱锥DABC的体积为.21. (本小题满分14分)已知函数.(1)求函数的单调区间;(2)若恒成立,试确定实数k的取值范围;(3)证明:.参考答案:(3)由(2)知,当时有在恒成立,且在上是减函数,,即在上恒成立,令,则,即,从而,  ……14分22. 在正方体中⑴求证:⑵求异面直线与所成角的大小. 参考答案:略略。

      点击阅读更多内容
      相关文档
      浙江省温州市洞头区2025年九年级下学期数学基础素养第一次适应性检测试题含答案.pptx 四川省内江市2025年九年级中考数学第一次模拟考试卷.pptx 浙江省宁波市镇2025年中考数学一模试卷含答案.pptx 湖南省长沙市2025中考第一次模拟考试数学试卷含答案.pptx 浙江省金华市2025年中考一模数学模拟试题含答案.pptx 浙江省宁波市2025年九年级学业水平质量检测数学试卷含答案.pptx 湖南省长沙市2025年中考数学模拟卷含答案.pptx 浙江省宁波市镇海区2025年中考一模数学试题含答案.pptx 湖南省长沙市望城区2025年中考一模数学试题含答案.pptx 四川省内江市2025年中考一模考试数学试题含答案.pptx 广东省深圳市2025年九年级下学期第二次学业质量监测数学试卷(二模).pptx 浙江省温州市2025年中考一模数学试卷含答案.pptx 四川省绵阳市平武县2025年一模数学试题含答案.pptx 浙江省温州市2025年九年级学生学科素养检测数学试卷(二模)含答案.pptx 四川省绵阳市北川羌族自治县2025年中考一模数学试题含答案.pptx 浙江省绍兴市2025年初中毕业生学业水平调测数学试题含答案.pptx 四川省广元市2025年九年级中考一诊数学试题含答案.pptx 浙江省金华市2025年中考模拟预测数学试题含答案.pptx 湖南省长沙市2025年九年级中考一模数学试题.pptx 高考语文一轮复习讲义 课时精炼专题15 对点精练五 精准赏析艺术技巧.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.