2017年山东日照中考真题数学.doc
13页2017年山东省日照市中考真题数学一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.-3的绝对值是( )A.-3B.3C.3D.解析:当a是负有理数时,a的绝对值是它的相反数-a.-3的绝对值是3.答案:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A.B. C.D.解析:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.答案:A3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为( )A.4.64105B.4.64106C.4.64107D.4.64108解析:4640万=4.64107.答案:C4.在Rt△ABC中,∠C=90,AB=13,AC=5,则sinA的值为( )A. B.C.D. 解析:在Rt△ABC中,由勾股定理得,BC= =12,∴sinA=.答案:B5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60,则∠2等于( )A.120B.30C.40D.60解析:∵∠AEF=∠1=60,∵AB∥CD,∴∠2=∠AEF=60.答案:D6.式子有意义,则实数a的取值范围是( )A.a≥-1B.a≠2C.a≥-1且a≠2D.a>2解析:式子有意义,则a+1≥0,且a-2≠0,解得:a≥-1且a≠2.答案:C7.下列说法正确的是( )A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60得△ADE,则△ABC与△ADE不全等解析:如图∠AOB==60,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60得△ADE,则△ABC与△ADE全等,D错误.答案:A.8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是( )A.B.C.D.解析:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意.答案:D9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30,则AC的长度是( )A.5B.5C.5D.解析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90,∵∠P=30,∴∠AOP=60,∴∠AOC=120,∵OA=OC,∴∠OAD=30,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD=,∴AC=2AD=5.答案:A10.如图,∠BAC=60,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为( )A.B.C.D.解析:∵∠BAC=60,AO是∠BAC的角平分线,∴∠BAO=30,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上.答案:D11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )A.23B.75C.77D.139解析:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75.答案:B12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是( )A.①②③B.③④⑤C.①②④D.①④⑤解析:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴-=2,c=0,∴b=-4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=-1和x=5时,y值相同,且均为正,∴a-b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.答案:C二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3-8m= .解析:2m3-8m=2m(m2-4)=2m(m+2)(m-2).答案:2m(m+2)(m-2)14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 .解析:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)5=182.答案:18215.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .解析:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60,∴S扇形BAE==6π.答案:6π16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45,则k的值为 .解析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90,∴∠AOM+∠OAM=90,∵∠AOB=∠OBA=45,∴OA=BA,∠OAB=90,∴∠OAM+∠BAN=90,∴∠AOM=∠BAN,在△AOM和△BAN中,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=,OD=BD=,∴B(,),∴双曲线y=kx(x>0)同时经过点A和B,∴()()=k,整理得:k2-2k-4=0,解得:k=1(负值舍去),∴k=1+.答案:1+三、解答题17.(1)计算:-(2-)-(π-3.14)0+(1-cos30)()-2;(2)先化简,再求值:,其中a=.解析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.答案:(1)-(2-)-(π-3.14)0+(1-cos30)()-2===-+1;(2)=== =,当a=时,原式=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即 ,可使四边形ABCD为矩形.请加以证明.解析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90,即可得出结论.答案:(1)在△DCA和△EAC中,∴△DCA≌△EAC(SSS).(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90,由(1)得:△DCA≌△EAC,∴∠D=∠E=90,∴四边形ABCD为矩形.故答案为AD=BC(答案不唯一)19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.解析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.答案:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个.(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.答案:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.633.75=54(万平方米). 答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平。





