好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

河北省保定市安国市2024-2025学年数学九上开学统考试题【含答案】.doc

25页
  • 卖家[上传人]:中****料
  • 文档编号:593722990
  • 上传时间:2024-09-29
  • 文档格式:DOC
  • 文档大小:915KB
  • / 25 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北省保定市安国市2024-2025学年数学九上开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≥1 D.x≤12、(4分)下列二次根式中,与是同类二次根式的是( )A. B. C. D.3、(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4、(4分)把直线向上平移个单位后,与直线的交点在第二象限,则的取值范围是( )A. B. C. D.5、(4分)已知一次函数y=(m+1)x+m2﹣1的图象经过原点,则m的值为((  )A.0 B.﹣1 C.1 D.±16、(4分)如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为(  )A.8 B.10 C.12 D.147、(4分)将化成的形式,则的值是( )A.-5 B.-8 C.-11 D.58、(4分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( )甲乙丙丁平均分94989896方差11.211.8A.甲 B.乙 C.丙 D.丁二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.10、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.11、(4分)如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.12、(4分)一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为______.13、(4分)在平行四边形ABCD中,∠A+∠C=200°,则∠A=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.15、(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;16、(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C 重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD. (1)当点E与点D重合时,△BDF的面积为 ;当点E为CD的中点时,△BDF的面积为 .(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想; (3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.17、(10分)小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分)的关系如图所示,请结合图象,解答下列问题:(1)a=   ,b=   ,m=   ;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?18、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)请直接写出不等式kx+b﹣3x>0的解集.(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)9的算术平方根是 .20、(4分)若是方程的解,则代数式的值为____________.21、(4分)如图,在ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B的度数是________.22、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.23、(4分)实数,在数轴上对应点的位置如图所示,化简的结果是__________.二、解答题(本大题共3个小题,共30分)24、(8分)解下列方程(1)(2)25、(10分)在△ABC 中,∠BAC=90°,AB0).(1)△PBM 与△QNM 相似吗?请说明理由;(2)若∠ABC=60°,AB=4 cm.①求动点 Q 的运动速度;②设△APQ 的面积为 s(cm2),求 S 与 t 的函数关系式.(不必写出 t 的取值范围)(3)探求 BP²、PQ²、CQ² 三者之间的数量关系,请说明理由.26、(12分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.(1)求证:∠A=2∠CBD;(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据题意若函数y=有意义,可得x-1≠0;解得x≠1;故选B2、C【解析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A.|a|与不是同类二次根式;B.与不是同类二次根式;C.2与是同类二次根式;D.与不是同类二次根式.故选C.本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.3、C【解析】根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c1=a1+b1,阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.4、A【解析】根据平移特征:向上平移个单位后可得:,再根据与直线的交点,组成方程组,解关于x,y的方程,得到x,y关于m的代数式,二象项的点横坐标小于1.纵坐标大于1,组成不等式组,即可得到答案.【详解】解:直线向上平移个单位后可得:,联立两直线解析式得:,解得:,即交点坐标为,,交点在第二象限,,解得:.故选:.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于1、纵坐标大于1.5、C【解析】先根据一次函数y=(m+1)x+(m2﹣1)的图象经过原点得出关于m的不等式组,求出m的值即可.【详解】∵一次函数y=(m+1)x+(m2﹣1)的图象经过原点,∴,解得m=1.故选:C.本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当b=0时函数图象经过原点是解答此题的关键.6、C【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】解:根据题意,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.7、A【解析】首先把x2-6x+1化为(x-3)2-8,然后根据把二次函数的表达式y=x2-6x+1化为y=a(x-h)2+k的形式,分别求出h、k的值各是多少,即可求出h+k的值是多少.【详解】解:∵y=x2-6x+1=(x-3)2-8,∴(x-3)2-8=a(x-h)2+k,∴a=1,h=3,k=-8,∴h+k=3+(-8)=-1.故选:A.此题主要考查了二次函数的三种形式,要熟练掌握三种形式之间相互转化的方法.8、C【解析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【详解】乙、丙同学的平均数比甲、丁同学的平均数大,应从乙和丙同学中选,丙同学的方差比乙同学的小,丙同学的成绩较好且状态稳定,应选的是丙同学;故选:.主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.二、填空题(本大题共5个小题,每小题4分,共20分)9、70%【解析】利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%。

      点击阅读更多内容
      相关文档
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.