
全国通用高考数学二轮复习 第一部分 微专题强化练 专题19 统计与统计案例含解析.doc
16页高考数学精品复习资料 2019.5【走向高考】(全国通用)20xx高考数学二轮复习 第一部分 微专题强化练 专题19 统计与统计案例(含解析)一、选择题1.(20xx·北京文,4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1 800青年教师1 600合计4 300A.90 B.100C.180 D.300[答案] C[解析] 由题意,总体中青年教师与老年教师比例为=;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即=,解得x=180.[方法点拨] 解决抽样问题,首先要深刻理解各种抽样方法的特点和适用范围,如分层抽样,适用于数目较多且各部分之间具有明显差异的总体.其次要抓住无论哪种抽样方法,每一个个体被抽到的概率都等于样本容量与总体容量的比值.2.(20xx·湖南文,2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3 B.4 C.5 D.6[答案] B[解析] 根据茎叶图中的数据得:成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人),故选B.[方法点拨] 1.三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等 从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取分层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.当总体数N不能被样本容量整除,用系统抽样法剔除多余个体时,必须随机抽样.3.(文)已知x、y的取值如下表所示:x0134y0.91.93.24.4从散点图分析,y与x线性相关,且=0.8x+a,则a=( )A.0.8 B.1 C.1.2 D.1.5[答案] B[解析] ==2,==2.6,又因为回归直线=0.8x+a过样本中心点(2,2.6)所以2.6=0.8×2+a,解得a=1.(理)(20xx·福建理,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程=x+,其中=0.76,=-.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元 B.11.8万元C.12.0万元 D.12.2万元[答案] B[解析] 考查线性回归方程.由已知得==10(万元),==8(万元),故=8-0.76×10=0.4.所以回归直线方程为=0.76x+0.4,社区一户年收入为15万元家庭年支出为=0.76×15+0.4=11.8(万元),故选B.[方法点拨] 1.要熟记用最小二乘法求回归直线的方程的系数公式.设线性回归方程为=x+,则.2.回归直线一定经过样本的中心点(,),据此性质可以解决有关的计算问题.4.(文)(20xx·安徽理,6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8 B.15 C.16 D.32[答案] C[解析] 考查样本的方差与标准差的应用.设样本数据x1,x2,…,x10的标准差为,则=8,即方差D(X)=64,而数据2x1-1,2x2-1,…,2x10-1的方差D(2X-1)=22D(X)=22×64,所以其标准差为=16.故选C.(理)等差数列x1,x2,x3,…,x9的公差为1,若以上述数据x1,x2,x3,…,x9为样本,则此样本的方差为( )A. B. C.60 D.30[答案] A[解析] 令等差数列为1,2,3,…,9,则样本的平均值=5,∴S2=[(1-5)2+(2-5)2+…+(9-5)2]==.[方法点拨] 平均数与方差样本数据的平均数=(x1+x2+…+xn).方差s2=[(x1-)2+(x2-)2+…+(xn-)2].注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散(波动)程度越大,越不稳定.5.(文)(20xx·河北邯郸市一模)某班的一次数学考试后,按学号统计前20名同学的考试成绩如茎叶图所示,则该样本数据的中位数为( )A.74.5 B.75 C.75.5 D.76[答案] C[解析] 中位数为=75.5.(理)(20xx·河南省高考适应性测试)某中学为了检验1000名在校高三学生对函数模块掌握的情况,进行了一次测试,并把成绩进行统计,得到样本频率分布直方图如下图所示,则考试成绩的众数大约为( )A.55 B.65 C.75 D.85[答案] C[解析] 最高小矩形中点的横坐标75为众数.[方法点拨] 1.茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).2.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.3.求中位数、平均数、方差主要依据公式进行计算.4.在频率分布直方图中,平均数的估计值等于每个小矩形的面积乘以小矩形底边中点横坐标之和;在中位数的估计值两侧直方图的面积相等;最高小矩形中点对应数据为这组数据的众数.6.(文)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{an}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为( )A.100 B.120 C.150 D. 200[答案] A[解析] 设公差为d,则a1+d=2a1,∴a1=d,∴d+2d+3d+4d+5d=1,∴d=,∴面积最大的一组的频率等于×5=.∴小长方形面积最大的一组的频数为300×=100.(理)某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”,则图中x的值为( )A.0.01 B.0.02 C.0.03 D.0.04[答案] A[解析] 由题设可知(0.005+x+0.012+0.020+0.025+0.028)×10=1,解得x=0.01,选A.[方法点拨] 1.在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值.2.准确理解给出图表及已知条件中数据的含义是解决统计问题的关键.7.(文)(20xx·湖北文,4)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( )A.x与y正相关,x与z负相关 B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关 D.x与y负相关,x与z正相关[答案] C[解析] 因为变量x和y满足关系y=-0.1x+1,其中-0.1<0,所以x与y成负相关;又因为变量y与z正相关,不妨设z=ky+b(k>0),则将y=-0.1x+1代入即可得到:z=k(-0.1x+1)+b=-0.1kx+(k+b),所以-0.1k<0,所以x与z负相关,综上可知,应选C.(理)(20xx·新课标Ⅱ理,3)根据下面给出的2004年至20xx年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,20xx年减少二氧化硫排放量的效果最显著B.20xx年我国治理二氧化硫排放显现成效C.20xx年以来我国二氧化硫年排放量呈减少趋势D.20xx年以来我国二氧化硫年排放量与年份正相关[答案] D[解析] 考查正、负相关及对柱形图的理解.由柱形图得,从20xx年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D.8.(文)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,收集数据如下:零件数x(个)1020304050607080加工时间y(min)626875818995102108设回归方程为y=bx+a,则点(a,b)在直线x+45y-10=0的( )A.左上方 B.左下方C.右上方 D.右下方[答案] C[解析] ∵=45,=85,∴a+45b=85,∴a+45b-10>0,故点(a,b)在直线x+45y-10=0的右上方,故选C.(理)(20xx·沈阳市质检)某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机调查了24名笔试者的成绩,如下表所示:分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数234951据此估计允许参加面试的分数线大约是( )A.75 B.80 C.85 D.90[答案] B[解析] 由题可知,在24名笔试者中应选出6人参加面试.由表可得面试分数线大约为80.故选B.二、填空题9.10名工人某天生产同一零件,生产的件数分别是10,12,14,14,14,15,15,16,16,17,设这10个数的中位数为a,众数为b,则a-b=________.[答案] 0.5[解析] 从数据中可以看出,众数b=14,且中位数a==14.5,∴a-b=14.5-14=0.5.10.(文)为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为123,第二小组频数为12,若全校男、女生比例为32,则全校抽取学生数为________.[答案]。
