
叙述并证明余弦定理(多篇).docx
50页叙述并证明余弦定理(多篇)推荐第1篇:叙述并证明余弦定理 叙述并证明余弦定理 余弦定理(第二余弦定理)余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 编辑本段余弦定理性质 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质—— a^2=b^2+c^2-2·b·c·cosA b^2=a^2+c^2-2·a·c·cosB c^2=a^2+b^2-2·a·b·cosC cosC=(a^2+b^2-c^2)/(2·a·b) cosB=(a^2+c^2-b^2)/(2·a·c) cosA=(c^2+b^2-a^2)/(2·b·c) (物理力学方面的平行四边形定则中也会用到) 第一余弦定理(任意三角形射影定理) 设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有 a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
编辑本段余弦定理证明 平面向量证法 ∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-Cosθ ∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c2=a2+b2-2*a*b*CosC 即CosC=(a2+b2-c2)/2*a*b 同理可证其他,而下面的CosC=(c2-b2-a2)/2ab就是将CosC移到左边表示一下 平面几何证法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB cosB=(c2+a2-b2)/2ac 编辑本段作用 (1)已知三角形的三条边长,可求出三个内角 (2)已知三角形的两边及夹角,可求出第三边。
(3)已知三角形两边及其一边对角,可求其它的角和第三条边见解三角形公式,推导过程略) 判定定理一(两根判别法): 若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取 减号的值 ①若m(c1,c2)=2,则有两解 ②若m(c1,c2)=1,则有一解 ③若m(c1,c2)=0,则有零解(即无解) 注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解 判定定理二(角边判别法): 一当a>bsinA时 ①当b>a且cosA>0(即A为锐角)时,则有两解 ②当b>a且cosA ③当b=a且cosA>0(即A为锐角)时,则有一解 ④当b=a且cosA ⑤当b二当a=bsinA时 ①当cosA>0(即A为锐角)时,则有一解 ②当cosA 三当a例如:已知△ABC的三边之比为5:4:3,求最大的内角 解设三角形的三边为a,b,c且a:b:c=5:4:3. 由三角形中大边对大角可知:∠A为最大的角。
由余弦定理 cosA=0 所以∠A=90°. 再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长 解由余弦定理可知 BC2=AB2+AC2-2AB×AC·cosA =4+9-2×2×3×cos60 =13-12x0.5 =13-6 =7 所以BC=√7.(注:cos60=0.5,可以用计算器算) 以上两个小例子简单说明了余弦定理的作用 编辑本段其他 从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角即,利用余弦定理,可以判断三角形形状同时,还可以用余弦定理求三角形边长取值范围 解三角形时,除了用到余弦定理外还常用正弦定理 推荐第2篇:余弦定理证明 余弦定理证明 在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a--> BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 勾股定理可知: AC²=AD²+DC² b²=(sinB*c)²+(a-cosB*c)² b²=sin²B*c²+a²+cos²B*c²-2ac*cosB b²=(sin²B+cos²B)*c²-2ac*cosB+a² b²=c²+a²-2ac*cosB 所以,cosB=(c²+a²-b²)/2ac 2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。
3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明: mb=(1/2) mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB) =(1/2)√(4c^2+a^2-4ac*cosB) 由b^2=a^2+c^2-2ac*cosB 得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式: ma=(1/2)√ =(1/2)√(2b^2+2c^2-a^2) 同理可得: mb= mc= 4 ma=√(c^2+(a/2)^2-ac*cosB) =(1/2)√(4c^2+a^2-4ac*cosB) 由b^2=a^2+c^2-2ac*cosB 得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式: ma=(1/2)√ =(1/2)√(2b^2+2c^2-a^2) 证毕 推荐第3篇:余弦定理及其证明 余弦定理及其证明 1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。
作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC 步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式 2.三角形的余弦定理证明: 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^ 2b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^ 2所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD+(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方 2谈正、余弦定理的多种证法 聊城二中魏清泉 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量。
