
2022年高中数学文科高考真题全国卷甲卷乙卷(卷一卷二)合集.docx
35页2022年高中数学文科高考真题全国卷甲卷乙卷(卷一卷二)合集2022年高中数学文科高考真题全国卷甲卷试卷与答案2022年高中数学文科高考真题全国卷乙卷试卷与答案2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则( )A. B. C. D. 2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A.讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若.则( )A. B. C. D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A.8 B.12 C.16 D.205.将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )A. B. C. D. 6,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A. B. C. D.7.函数在区间的图像大致为( )A. B.C. D.8.当时,函数取得最大值,则( )A. B. C. D.19.在长方体中,已知与平面和平面所成的角均为,则( )A. B.AB与平面所成的角为C. D.与平面所成的角为10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )A. B. C. D.11.已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )A. B. C. D. 12.已知,则( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量.若,则______________.14.设点M在直线上,点和均在上,则的方程为______________.15.记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.16.已知中,点D在边BC上,.当取得最小值时,______________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答一)必考题:共60分17.(12分)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:,0.1000.0500.0102.7063.8416.63518.(12分)记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.19.(12分)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).20.(12分)已知函数,曲线在点处的切线也是曲线的切线.(1)若,求a:(2)求a的取值范围.21.(12分)设抛物线的焦点为F,点,过的直线交C于M,N两点.当直线MD垂直于x轴时,.(1)求C的方程:(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.(二)选考题:共10分。
请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.23.[选修4-5:不等式选讲](10分)已知均为正数,且,证明:(1)(2)若,则.2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)参考答案注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. A 2. B 3. D 4. B 5.C 6. C 7.A 8.B 9. D 10. C 11. B 12.A二、填空题:本题共4小题,每小题5分,共20分.13. ##14. 15. 2(满足皆可)16. ##三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. (1)A,B两家公司长途客车准点的概率分别为, (2)有18. (1)证明见解析; (2).19. (1)如图所示:,分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.(2).20. (1)3 (2)21. (1); (2).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. (1); (2)的交点坐标为,,的交点坐标为,.[选修4-5:不等式选讲]23.(1)证明:由柯西不等式有,所以,当且仅当时,取等号,所以;(2)证明:因为,,,,由(1)得,即,所以,由权方和不等式知,当且仅当,即,时取等号,所以.2022年普通高等学校招生全国统一考试(全国乙卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号框回答非选择题时,将答案写在答题卡上写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.集合,则()A.B.C.D.2.设,其中为实数,则()A.B.C.D.3.已知向量,则()A.2B.3C.4D.54.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.65.若x,y满足约束条件则的最大值是()A.B.4 C.8 D.126.设F为抛物线的焦点,点A在C上,点,若,则()A.2 B. C.3 D.7.执行右边的程序框图,输出的()A.3 B.4 C.5 D.68.右图是下列四个函数中的某个函数在区间的大致图像,则该函数是()A.B.C.D.9.在正方体中,分别为的中点,则()A.平面平面B.平面平面C.平面平面D.平面平面10.已知等比数列的前3项和为168,,则()A.14 B.12 C.6 D.311.函数在区间的最小值、最大值分别为()A. B. C. D.12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.记为等差数列的前n项和.若,则公差_______.14.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.15.过四点中的三点的一个圆的方程为______.16.若是奇函数,则_____,______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答一)必考题:共60分17.(12分)记的内角A,B,C的对边分别为a,b,c﹐已知.(1)若,求C;(2)证明:.18.(12分)如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:样本号i12345678910总和根部横截面积0.040.060.040.08。












