
人教版七年级上册数学1-2单元测试题及参考答案.doc
14页《1.1正数和负数》测试题一.填空题 1.____,既不是正数,也不是负数非负数涉及____和____;非正数涉及____和____考察阐明:本题重要考察的知识点是“0”的特殊性,这是学生的易错点0既不是正数,也不是负数答案与解析:0; 0 ,正数; 0 , 负数这是基本的概念 2.温度上升-5℃的实际意义是____________ .考察阐明:本题重要考察的知识点是相反意义的量分别用正数和负数表达答案与解析:温度下降5℃上升负的,即是下降正的 3.一种零件的内径尺寸在图纸上是10±0.05(单位:毫米),表达这种零件的原则尺寸是10毫米,加工规定最大不超过原则尺寸______ ,最小不不不小于原则尺寸__________ 考察阐明:本题考察的知识点是相反意义的量分别用正数和负数表达 答案与解析:0.05毫米 0.05毫米对相反意义的量要对的理解 4.下列一组数中,-5、2.6、- 、0.72、-3 、- 3.6,负数共有__个 考察阐明:本题重要考察正数和负数的概念在正数前面加上“-”的数叫做负数 答案与解析:4即-5,- ,-3 ,-3.6 5.在一条东西向的跑道上,小方先向东走了8米,记作“+8米”,又向西走了10米,此时她的位置可记作__ 米。
考察阐明:本题重要考察的知识点是相反意义的量分别用正数和负数表达,并用意义进行简朴的复合运算 答案与解析:-2在向东走8米基本上再向西走10米,一共是向西走了2米,记做-2米 二、选择题 6. 下面是有关0的某些说法,其中对的说法的个数是(__) ①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0____ B.1____ C.2____ D.3 考察阐明:本题重要考察”0”的特殊性 答案与解析:D①是对的②是对的③是错的,由①可得④是对的,非负数就是正数和0⑤是错的,0是偶数 7.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在(__) A.文具店____________B.玩具店 C.文具店西40米处____ D.玩具店西60米处 考察阐明:本题考察的知识点是用正负数来表达一对相反意义的量,并需要通过找到一种基准点和简朴的图形来解决问题 答案与解析:A以书店为基准,沿街向东走了40米,接着又向东走了-60米,阐明此时在书店以西20米,即在文具店。
三、解答题 8.某地气象站测得某天的四个时刻气温分别为:上午6点为零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃. 1.用正数或负数表达这四个不同步刻的温度. 2.上午6点比晚上12点高多少度. 3.下午4点比中午12点低多少度. 考察阐明:此题考察相反意义的量用正负数来表达由于学生此时不会有理数的加减法,所后来面的问题可以不用算式,但要通过实际生活经验来理解和掌握一种正数比一种负数大多少,或一种负数比另一种负数大多少,对加强有理数的运算的理解也有协助 答案与解析:1.分别为:-3℃,1℃,0℃,-9℃ 2.高6℃ 3.低1℃《1.2有理数》测试题 一、填空题 1.如果一种数的相反数是35,那么这个数是______. 考察阐明:此题考察的是相反数的概念. 答案与解析:-35.由于互为相反数的两数只有符号不同,因此35的相反数就是-35,反之亦然. 2.绝对值最小的数是______.任何一种有理数的绝对值是____. 考察阐明:本题考察了绝对值的概念与意义.对刚刚踏入初中的学生,绝对值的概念抽象、不好理解.本题还复习了“0”是分界点的特殊性. 答案与解析:0,正数和0.由于负数的绝对值是它的相反数,是正数,正数的绝对值是它自身,也是正数,0的绝对值是0,因此任何一种有理数的绝对值都是非负数. 3.绝对值是5.5的数有______个,它们是_______.在有理数中,绝对值等于它自身的数有__ 个,它们是____ . 考察阐明:本题运用的是绝对值意义的逆用.答案与解析:两个 ,5.5和-5.5 , 无数个, 非负数,由于正数的绝对值是它自身,0的绝对值是0,因此反过来,绝对值等于它自身的数有正数和0.由于负数的绝对值是它的相反数,也是正数,因此绝对值等于一种正数的数有两个,它们互为相反数. 4.- ,- , 的大小关系为________ . 考察阐明:本题考察的知识点是有理数大小的比较,解题的核心一种是懂得“正数不小于负数”,第二是理解两个正数比较大小,绝对值大的反而小. 答案与解析:- < - <__ .在这三个数中,只有 是正数,其她两个是负数,因此它最大;而 ﹥ ,得- ﹤- . 5.在数轴上点A表达的数是2,到A点的距离是4个单位长度的点表达的数是____ . 考察阐明:本题重要考察数轴的上整数点的位置,还对绝对值的概念的掌握提高了规定.渗入了一点“分类讨论”的思想,需要思维的严密. 答案与解析:-2和6.只要波及到“距离”,就要想到绝对值的概念,因此A点左右均有值,左边为-2,右边为6. 二、选择题 6. 绝地值相等的两个数在数轴上相应的两点距离为8,则这两个数为(__ ) (A)+8或- 8__ (B)+4或-4____ (C)-4或+8__ (D)-8或+4 考察阐明:本题重要考察绝对值和相反数,这是这一小节的重点和难点,特别是绝对值的概念,许多学生很难理解和接受,更不能灵活应用. 答案与解析:B.绝对值相等的两数要么相等,要么互为相反数,此题明显是互为相反数.这两数到原点距离相等,因此“8”被原点平分,即每个点到原点距离为4. 7.下列结论对的的有(__ )个: ① 规定了原点,正方向和单位长度的直线叫数轴; ② 最小的整数是0;③ 正数,负数和零统称有理数;④ 数轴上的点都表达有理数 A 1个__ B 2个__C 3个__ D 4个 考察阐明:本题综合考察了有理数部分的有关概念和分类. 答案与解析:B.①是对的,是书上定义.②是错的,负整数比0还小.③是对的,有理数分类可以这样分.④是错的,数轴上的点不仅可以表达有理数,还可以表达无理数. 三、解答题 8.把下列各数分别填在括号内:-2.1,0.5,98,0, , ,14 ,-38,+3 正数集合:{____________…} 非负数集合:{__________ … } 整数集合:{__________ … } 分数集合:{____________…} 考察阐明:本题重要考察有理数的分类,不是难题,但很容易错,也考察细心限度. 答案与解析: 0.5, 98, , ,14 ,+3; 0.5, 98,0, , ,14 ,+3; 98,0,-38,+3; -2.1,0.5, , ,14 .《1.3有理数的加减法》测试题一、填空题 1. 比-6小-3的数是_______. 考察阐明:本题知识点是运用有理数减法法则转换成加法法则进行实践运算,从而形成运算技能. 答案与解析:-3.式子为:-6-(-3)=-6+3=-3 2.某地傍晚气温为-2℃,到夜晚下降了5℃,则夜晚的气温为_____,第二天中午上升了10℃,则此时温度为_____. 考察阐明:本题知识点是掌握有理数加法和减法法则,并能运用法则进行计算. 答案与解析:-7,3.式子为:-2-5=-7,-7+10=3. 3. (__)-(-10)=20,-8-(__)=-15. 考察阐明:本题看起来是减法,实际都可以转换为加法. 答案与解析:10,7.第一种式子可先化为:( )+10=20,转化为小学知识;第二个式子可以运用加减法互为逆运算转化为:( )=-8-(-15)=-8+15=7. 4.已知一种数是-2,另一种数比-2的相反数小3,则这两个数和的绝对值为_____. 考察阐明:本题把相反数、绝对值和加减法运算法则综合起来,核心要仔细,把题中的每一种概念都在式子中反映出来. 答案与解析:3.把题中的语言体现转化为数学式子为:-(-2)-3=2-3=1, + =2+1=3. 5.-[0.5- -( +2.5-0.3)]=____________ . 考察阐明:本题考察的知识点是有理数的加减法混合运算,仔细和基本计算能力是重要考察的地方,涉及符号和括号. 答案与解析:2.2.原式=-[0.5- -( + - )]=-[0.5- - ]=-[ - - ]=-[- ]=2.2. 二、选择题 6.下列说法对的的个数为________________( ) (1)两个有理数的和为正数时,这两个数都是正数. (2)两个数的和的绝对值一定等于这两个数绝对值的和. (3)两个有理数的和为负数时,这两个数都是负数. (4)如果两个数的和为负,那么这两个加数中至少有一种是负数. A0个____ B1个__ C2个____D3个 考察阐明:本题考察有理数加法法则的理解. 答案与解析:A.(1)是错的,由于一正一负或有一种为0均有也许和为正,例如:-3+5=2,2+0=2.(2)是错的,由于只有两数同号或有一种为0时才成立,反例: 与 + 不等.(3)是错的,理由同(1).(4)是对的,如果两数中没有一种是负数,和中不会有负号. 7.若两个数绝对值之差为0,则这两个数__________( ) A.相等______________ B.互为相反数 C.两数均为0________ D.相等或互为相反数 考察阐明:本题重要考察的是绝对值分两种状况考虑. 答案与解析:D.由于两数绝对值之差为0,阐明这两数绝对值相等,分两种状况:要么同号,则相等;要么异号,则互为相反数. 三、解答题 8.弘文中学定于十一月份举办运动会,组委会在整修百米跑道时,工作人员从A处动工,商定向东为正,向西为负,从动工处A到收工处B所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,工作人员整修跑道共走了多少路程? 考察阐明:本题考察的知识点很简朴,实际是加法的运算能力.但需要认真审题,“共走了多少路程?”,因此要加绝对值. 答案与解析:54.列算式为: + + + + + + + + =10+3+4+2+13+8+7+5+2=54.《1.4有理数的乘除法》测试题一、填空题 1. 的相反数为 ,倒数为 . 考察阐明:本题考察的知识点是相反数和倒数。
答案与解析:0.2,-5相反数就是变化符号,倒数就是相乘得1 2. ___________ 考察阐明:本题考察的知识点是乘法分派律的逆用,对诸多学生来说比较难 答案与解析:0由a×(b+c)=ab+ac得ab+ac= a×(b+c),因此 6.868 ×(-5-12+17)=6.868×0=0 3. ; =____ ; 考察阐明:本题重要考察的知识点是有理数除法法则 答案与解析:-64,- 同号得正,异号得负,并把绝对值相除,分数就是除法,再把除法化成乘法 4. ___________ 考察阐明:本题考察多种有理数相乘时的符号法则奇数个负号因数,积取负号此外还考察了运用乘法的结合律进行简化计算 答案与解析:-100 -2.5×1.25×40×0.8=-(2.5×40)×(。












