好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025年广东普通高中学业水平选择性考试数学试卷(原卷+答案).doc

33页
  • 卖家[上传人]:穆童
  • 文档编号:613919116
  • 上传时间:2025-08-25
  • 文档格式:DOC
  • 文档大小:3.80MB
  • / 33 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025年广东高考数学试题及答案注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号,试室号,座位号填写在答题卡上.用2B铅笔将试卷类型和考生号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应的题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再填涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 的虚部为( )A. B. 0 C. 1 D. 6【答案】C【解析】【分析】根据复数代数形式的运算法则以及虚部的定义即可求出.【详解】因为,所以其虚部为1,故选:C.2. 设全集,集合,则中元素个数为( )A 0 B. 3 C. 5 D. 8【答案】C【解析】【分析】根据补集的定义即可求出.【详解】因为,所以, 中的元素个数为,故选:C.3. 若双曲线C的虚轴长为实轴长的倍,则C的离心率为( )A. B. 2 C. D. 【答案】D【解析】【分析】由题可知双曲线中的关系,结合和离心率公式求解【详解】设双曲线的实轴,虚轴,焦距分别为,由题知,,于是,则,即.故选:D4. 若点是函数的图象的一个对称中心,则a的最小值为( )A. B. C. D. 【答案】C【解析】【分析】根据正切函数的对称中心的结论求解.【详解】根据正切函数的性质,的对称中心横坐标满足,即的对称中心是,即,又,则时最小,最小值是,即故选:C5. 设是定义在上且周期为2的偶函数,当时,,则( )A. B. C. D. 【答案】A【解析】【分析】根据周期性和奇偶性把待求自变量转化为的范围中求解.【详解】由题知对一切成立,于是.故选:A6. 帆船比赛中,运动员可借助风力计测定风速的大小和方向,测出的结果在航海学中称为视风风速,视风风速对应的向量,是真风风速对应的向量与船行风速对应的向量之和,其中船行风速对应的向量与船速对应的向量大小相等,方向相反.图1给出了部分风力等级、名称与风速大小的对应关系.已知某帆船运动员在某时刻测得的视风风速对应的向量与船速对应的向量如图2(风速的大小和向量的大小相同),单位(m/s),则真风为( )等级风速大小m/s名称21.1~3.3轻风33.4~5.4微风45.5~7.9和风58.0~10.1劲风A. 轻风 B. 微风 C. 和风 D. 劲风【答案】A【解析】【分析】结合题目条件和图写出视风风速对应的向量和船行风速对应的向量,求出真风风速对应的向量,得出真风风速的大小,即可由图得出结论.【详解】由题意及图得,视风风速对应的向量为:,视风风速对应的向量,是真风风速对应的向量与船行风速对应的向量之和,船速方向和船行风速的向量方向相反,设真风风速对应的向量为,船行风速对应的向量为,∴,船行风速:,∴,,∴由表得,真风风速为轻风,故选:A.7. 若圆上到直线的距离为1的点有且仅有2个,则r的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】先求出圆心到直线的距离,然后结合图象,即可得出结论.【详解】由题意,在圆中,圆心,半径为,到直线的距离为的点有且仅有 个,∵圆心到直线的距离为:,故由图可知,当时,圆上有且仅有一个点(点)到直线的距离等于;当时,圆上有且仅有三个点(点)到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B.8. 若实数x,y,z满足,则x,y,z的大小关系不可能是( )A. B. C. D. 【答案】B【解析】【分析】法一:设,对讨论赋值求出,即可得出大小关系,利用排除法求出;法二:根据数形结合解出.【详解】法一:设,所以令,则,此时,A有可能;令,则,此时,C有可能;令,则,此时,D有可能;故选:B.法二:设,所以,根据指数函数的单调性,易知各方程只有唯一的根, 作出函数的图象,以上方程的根分别是函数的图象与直线的交点纵坐标,如图所示:易知,随着的变化可能出现:,,,,故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在正三棱柱中,D为BC中点,则( )A. B. 平面C. 平面 D. 【答案】BC【解析】【分析】法一:对于A,利用空间向量的线性运算与数量积运算即可判断;对于B,利用线面垂直的判定与性质定理即可判断;对于C,利用线面平行的判定定理即可判断;对于D,利用反证法即可判断;法二:根据题意建立空间直角坐标系,利用空间向量法逐一分析判断各选项即可得解.【详解】法一:对于A,在正三棱柱中,平面,又平面,则,则,因为是正三角形,为中点,则,则又,所以,则不成立,故A错误;对于B,因为在正三棱柱中,平面,又平面,则,因为是正三角形,为中点,则,又平面,所以平面,故B正确;对于C,因为在正三棱柱中,又平面平面,所以平面,故C正确;对于D,因为在正三棱柱中,,假设,则,这与矛盾,所以不成立,故D错误;故选:BC.法二:如图,建立空间直角坐标系,设该正三棱柱的底边为,高为,则,对于A,,则,则不成立,故A错误;对于BC,,设平面的法向量为,则,得,令,则,所以,,则平面,平面,故BC正确;对于D,,则,显然不成立,故D错误;故选:BC.10. 设抛物线的焦点为F,过F的直线交C于A、B,过F且垂直于的直线交于E,过点A作准线l的垂线,垂足为D,则( )A. B. C. D. 【答案】ACD【解析】【分析】对于A,先判断得直线为抛物线的准线,再利用抛物线的定义即可判断;对于B,利用三角形相似证得,进而得以判断;对于C,利用直线的反设法(法一)与正设法(法二),联立直线与抛物线方程,结合韦达定理与焦点弦公式可判断C;利用利用三角形相似证得,,结合焦半径公式可判断D.【详解】法一:对于A,对于抛物线,则,其准线方程为,焦点,则为抛物线上点到准线的距离,为抛物线上点到焦点的距离,由抛物线的定义可知,,故A正确;对于B,过点作准线的垂线,交于点,由题意可知,则,又,,所以,所以,同理,又,所以,即,显然为的斜边,则,故B错误;对于C,易知直线的斜率不为,设直线的方程为,,联立,得,易知,则,又,,所以,当且仅当时取等号,故C正确;对于D,在与中,,所以,则,即,同理,又,,所以,则,故D正确.故选:ACD.法二:对于A,对于抛物线,则,其准线方程为,焦点,则为抛物线上点到准线的距离,为抛物线上点到焦点的距离,由抛物线的定义可知,,故A正确;对于B,过点作准线的垂线,交于点,由题意可知,则,又,,所以,所以,同理,又,所以,即,显然为的斜边,则,故B错误;对于C,当直线的斜率不存在时,;当直线的斜率存在时,设直线方程为,联立,消去,得,易知,则,所以,综上,,故C正确;对于D,在与中,,所以,则,即,同理,当直线的斜率不存在时,,;所以,即;当直线的斜率存在时,,,所以,则;综上,,故D正确.故选:ACD.11. 已知的面积为,若,则( )A. B. C. D. 【答案】ABC【解析】【分析】对由二倍角公式先可推知A选项正确,然后分情况比较和的大小,亦可使用正余弦定理讨论解决,结合正弦函数的单调性可推出,然后利用算出取值,最后利用三角形面积求出三边长,即可判断每个选项.【详解】,由二倍角公式,,整理可得,,A选项正确;由诱导公式,,展开可得,即,若,则可知等式成立;若,即,由诱导公式和正弦函数的单调性可知,,同理,又,于是,与条件不符,则不成立;若,类似可推导出,则则不成立.综上讨论可知,,即.方法二:时,由,则,于是,由正弦定理,,由余弦定理可知,,则,若,则,注意到,则,于是(两者同负会有两个钝角,不成立),于是,结合,而都是锐角,则,于是,这和相矛盾,故不成立,则由,由,则,即,则,同理,注意到是锐角,则,不妨设,则,即,由两角和差的正弦公式可知,C选项正确由两角和的正切公式可得,,设,则,由,则,则,于是,B选项正确,由勾股定理可知,,D选项错误.故选:ABC三、填空题:本大题共3小题,每小题5分,共计15分.12. 若直线是曲线的切线,则_________.【答案】【解析】【分析】法一:利用导数的几何性质与导数的四则运算求得切点,进而代入曲线方程即可得解;法二:利用导数的几何性质与导数的四则运算得到关于切点与的方程组,解之即可得解.【详解】法一:对于,其导数为,因为直线是曲线的切线,直线的斜率为2,令,即,解得,将代入切线方程,可得,所以切点坐标为,因为切点在曲线上,所以,即,解得.故答案为:.法二:对于,其导数为,假设与的切点为,则,解得.故答案为:.13. 若一个等比数列的前4项和为4,前8项和为68,则该等比数列的公比为_________.【答案】【解析】【分析】法一:利用等比数列的求和公式作商即可得解;法二:利用等比数列的通项公式与前项和的定义,得到关于的方程,解之即可得解;法三:利用等比数列的前项和性质得到关于的方程,解之即可得解.【详解】法一:设该等比数列为,是其前项和,则,设的公比为,当时,,即,则,显然不成立,舍去;当时,则,两式相除得,即,则,解得,所以该等比数列公比为.故答案为:.法二:设该等比数列为,是其前项和,则,设的公比为,所以,,所以,则,解得,所以该等比数列公比为.故答案为:.法三:设该等比数列为,是其前项和,则,设的公比为,因为,又,所以,解得,所以该等比数列公比为.故答案为:.14. 一个箱子里有5个相同的球,分别以1~5标号,若有放回地取三次,记至少取出一次的球的个数X,则数学期望_________.【答案】##【解析】【分析】法一:根据题意得到的可能取值,再利用分步乘法原理与古典概型的概率公式求得的分布列,从而求得;法二,根据题意假设随机变量,利用对立事件与独立事件的概率公式求得,进而利用数学期望的性质求得.【详解】法一:依题意,的可能取值为1、2、3,总的选取可能数为,其中:三次抽取同一球,选择球的编号有5种方式,故,:恰好两种不同球被取出(即一球出现两次,另一球出现一次),选取出现两次的球有5种方式,选取出现一次的球有4种方式,其中选取出现一次球的位置有3种可能,故。

      点击阅读更多内容
      相关文档
      25秋国家开放大学《0-3岁婴幼儿的保育与教育》形考任务1-4参考答案.docx 25秋国家开放大学《0-3岁婴幼儿卫生与保育》形考任务1-3+期末大作业参考答案.docx 25秋国家开放大学《0-3岁婴幼儿教育学》期末大作业参考答案.docx 25秋国家开放大学《Android核心开发技术》形考任务1-7参考答案.docx 国开2025年秋季《形势与政策》大作业答案.docx 国开2025年秋季《形势与政策》专题测验1-5答案.docx 2025年辽宁普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年广西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年6月浙江普通高中学业水平选择性考试地理试卷(原卷+答案).doc 2025年江西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年内蒙古普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年贵州普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年安徽普通高中学业水平选择性考试生物试卷(原卷+答案).doc 2025年辽宁普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年1月云南省高考适应性测试物理试卷(原卷+答案).doc 2025年江苏普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年甘肃普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年陕西普通高中学业水平选择性考试生物试卷1(原卷+答案).doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.