
2023年武汉市初中毕业生考试数学试卷参考答案与解析.docx
5页2023年武汉市初中毕业生考试数学试卷参考答案与解析 ; 2023年武汉市初中毕业生考试数学试卷考试时间:2023年6月20日14:30~16:30、 一、选择题〔共10小题,每题3分,共30分〕 1.温度由-4℃回升7℃是〔〕 A.3℃2.假设分式 B.-3℃ C.11℃ D.-11℃ 1在实数范围内有意义,那么实数x的取值范围是〔〕 x《2B.x<-2 B.2x2 A.x>-2 A.2 C.x=-2 C.2x D.x≠-2 D.4x23.计算3x2-x2的结果是〔〕4.五名女生的体重〔单位:kg〕分别为:37、40、38、42、42,这组数据的众数和中位数分别是〔〕 A.2、40 A.a2-6A.(2,5)B.42、38 C.40、42 C.a2+6D.42、40 D.a2-a+6 D.(-5,2)5.计算(a-2)(a+3)的结果是〔〕B.a2+a-6B.(-2,5)6.点A(2,-5)关于x轴对称的点的坐标是〔〕C.(-2,-5)7.一个几何体由假设干个相同的正方体组成,其主视图和俯视图如下图,那么这个几何体中正方体的个数最多是〔〕 A.3 B.4 C.5 D.68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,那么两次抽取的卡片上数字之积为偶数的概率是〔〕 A.1 4B.1 23 11 19 27 C.3 45D.5 68 16 24 329.将正整数1至2023按一定规律排列如下表: 1 9 17 25 《《 A.2023 2 10 18 264 12 20 28 6 14 22 30 7 15 23 31D.202313 21 29C.2023平移表中带阴影的方框,方框中三个数的和可能是〔〕B.202310.如图,在⊙O中,点C在优弧AB 上,将弧BC 沿BC折叠后刚好经过AB的中点D.假设⊙O的半径为5,AB=4,那么BC的长是〔〕 A.23C.B.32D. ⌒⌒53265 2二、填空题〔本大题共6个小题,每题3分,共18分〕 11.计算(3《2)《3的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况 移植总数n 成活数m 400 325 1500 1336 0.891 3500 3203 0.915 7000 6335 0.905 9000 8073 0.897 14000 12628 0.902 成活的频率〔精确到0.01〕 0.813 由此估计这种幼树在此条件下移植成活的概率约是___________〔精确到0.1〕 13.计算的结果是___________ m2《11《m214.以正方形ABCD的边AD作等边△ADE,那么∠BEC的度数是___________m《1315.飞机着陆后滑行的距离y〔单位:m〕关于滑行时间〔单位:ts〕的函数解析式是y《60t《t2.在2飞机着陆滑行中,最后4 s滑行的距离是___________m16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.假设DE平分△ABC的周长,那么DE的长是___________ 三、解答题〔共8题,共72分〕 《x《y《1017.〔此题8分〕解方程组:《《2x《y《1618.〔此题8分〕如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF 19.〔此题8分〕某校七年级共有500名学生,在“世界读书日〞前夕,发展了“阅读助我成长〞的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本 1 2 3 4 学生人数 15 a b 5 (1) 直接写出m、a、b的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.〔此题8分〕用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购置A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购置A型钢板x块〔x为整数〕 (1) 求A、B型钢板的购置计划共有多少种?(2) 发售C型钢板每块利润为100元,D型钢板每块利润为120元.假设童威将C、D型钢板全部发售,请你设计获利最大的购置计划21.〔此题8分〕如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB (1) 求证:PB是⊙O的切线 (2) 假设∠APC=3∠BPC,求PE的值 CE22.〔此题10分〕已知点A(a,m)在双曲线y《8上且m<0,过点A作x轴的垂线,垂足为B x(1) 如图1,当a=-2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C ① 假设t=1,直接写出点C的坐标 ② 假设双曲线y《8经过点C,求t的值 x88〔x>0〕沿y轴折叠得到双曲线y《《〔x<0〕,将线段xx8〔x<0〕上的点D(d,n)处,求m和n的数量关x(2) 如图2,将图1中的双曲线y《OA绕点O旋转,点A刚好落在双曲线y《《系 23.〔此题10分〕在△ABC中,∠ABC=90°、(1) 如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN(2) 如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=25,求tanC的值 5(3) 如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=写出tan∠CEB的值3AD2,《,直接5AC5 24.〔此题12分〕抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B (1) 直接写出抛物线L的解析式(2) 如图1,过定点的直线y=kx-k+4〔k<0〕与抛物线L交于点M、N.假设△BMN的面积等于1,求k的值(3) 如图2,将抛物线L向上平移m〔m>0〕个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.假设△PCD与△POF相似,并且合乎条件的点P恰有2个,求m的值及相应点P的坐标 2023年武汉中考数学参考答案与解析一、选择题1 A提示:9.设中间的数为x,那么这三个数分别为x-1,x,x+1∴这三个数的和为3x,所以和是3和倍数,又2023÷3=671,673除以8的余数为1,∴2023在第1列〔舍去〕;2023÷3=672,672除以8的余数为0,∴2023在第8列〔舍去〕;2023÷3-671,671除以8的余数为7,∴2023在第7列,所以这三数的和是是2023, 应选答案D.2 D 3 B 4 D 5 B 6 A 7 C 8 C 9 D 10 B 《沿BC折叠,∴10.连AC、DC、OD,过C作CE⊥AB于E,过O作OF⊥CE于F,∵BC∠CDB=∠H,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA,∴CA=CD,∵CE⊥AD,∴AE=ED=1,∵OA《5,AD=2,∴OD=1,∵OD⊥AB,∴OFED为正方形,∴OF=1,OC《5,∴CF=2,CE=3,∴CB《32. CCHEFOOAEDBFADB 法一图法二图 法二第10题作D关于BC的对称点E,连AC、CE,∵AB=4,AE《2AO《25,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC=CE,延长BA至F,使FA=BE,连FC,易证△FCA≌△BCE,∴∠FCB=90°,∴BC《22FB《《AB《BE《《32. 22 。












