好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

简谐振动的合成及其MATLAB实现.docx

17页
  • 卖家[上传人]:工****
  • 文档编号:454011559
  • 上传时间:2022-08-26
  • 文档格式:DOCX
  • 文档大小:234.50KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 简谐运动的合成及其MATLAB 实现班级: 理科实验12-3姓名:董林学号: 姓名:张国程学号: 2013.11.20简谐运动的合成及其MATLAB实现董林(70%)张国程(30%)摘要:MATLAB是一款集符号计算、数值分析、图形可视化、模拟仿真等多种 功能为一体的科技应用软件本文应用MATLAB软件,通过编程计算和数值模拟, 用一个程序初步解决了平面简谐振动的合成的问题将简谐振动合成的函数进行 了准确的计算和对图形的模拟和分析比较,加深了对其的掌握和理解关键词:MATLAB应用、简谐振动合成、数值模拟、分析比较Abstract : Waveforms and trajectories of simple harmonic vibration at different frequencies at one ,two and three-dimensional coordinates are mapped based on MATLAB, upon which the laws of composition of simple harmonic vibration at different frequencies are explored.Keywords :MATLAB ; simple harmonic vibration at different frequencies; compositionO、引言MATLAB软件介绍MATLAB将矩阵运算、数值分析、图形处理、编程技术结合在一起,为用户提供了一个强有 力的科学及工程问题的分析计算和程序设计工具,它还提供了专业水平的符号计算、文字处 理、可视化建模仿真和实时控制等功能,是具有全部语言功能和特征的新一代软件开发平台。

      简谐振动的合成的背景及意义 简谐运动的合成问题在大学物理学习中占有不可忽视的作用,教材中通常讲解解析法和转矢 量法但是这两种方法均存在不足之处:由解析法得到的合成图像方程不直观;旋转矢量法 虽直观形象,但准确率欠佳,而且完整作图要花费时间这给学习带来诸多不便,导致学习 效果不佳如果巧妙地利用MATLAB进行计算机进行辅助学习,问题就会迎刃而解 1.简谐振动合成的理论分析1.1同方向同频率的简谐振动的合成 如图所示,设有两个独立的同频率的简谐振动,位移为X]二 A1cos(^t + 叫,x2 二 A2cos(et + 卩2)由于两个振动在同一直线上,因此合振动为x = x 1 + x 2 = A]COS(et + 甲 1) + A2cos(et + 甲 2) = (A]cos^1 + A2cos^2)coswt -(A]sin^1 + A2sin02)sinet,令Acos申=A1cos^l + A2cos^2, Asin® = A】sin申]+ A2sin®2则 x = Acos申coswt - Asin申sinwt 二Acos(wt + 叽+ A2 + 2A A cos(申一申),2 1 2 2 1A sin ® + A sin ®申=arctan 1 12 2 .A cos 申 + A cos 申1 1 2 21.2 同方向不同频率的简谐振动的合成设一个质点同时参与两个同一直线不同频率的简谐振动,角频率分别为3]和32,为了突 出频率不同所产生的效果,设分振动的振幅和初相位都相同,因此两个分振动方程为叫=Acos(咛 +0丿,X2 =Acos(e2t + 甲2)利用和差化积公式可得合振动为3 — G 0 — 0 ⑺+⑺ 0+0x = xi + x2 = 24cos( t + )cos( 2 + 21 2 ^2 ^2 ^2 ^2当两个分振动的频率比较大而差异比较小时:丨绥-3」<< 叫+ 6,方程就表示了振幅 按2Acos[(32- 31)”2]变化的角频率为(32 + 31)/2的“近似”的简谐振动。

      1.3 相互垂直同频率的两简谐振动的合成设两个同频率的简谐振动分别沿X轴和y轴进行,位移为x二 A1cos(wt + 申J, y = A2cos(3t + 申2),这就是质点运动的参数方程将余弦函数展开得x/A1 = cosetcos®] - sinetsin®],y/A2 = coswtcos^2 - sinwtsin^2xsin/A -尹sin/A = cose/sin(0 -申)2 1 1 2 2 1xcos申 /A - ycos申 /A = sin血sin(0 -申)2 1 1 2 2 1质点的轨迹方程yjA 22 xy cos( 9 - 9 )二 sin 2 (申-9 )A A 2 1 2 11 2 1 2两个互相垂直的同频率简谐振动的合成一般是椭圆,其形状和大小以及两个主轴的方向由振 幅A】和A2以及初相差®2 - ®]决定1. 4同频率三维简谐运动合成设一个质点沿x轴、y轴z轴的分运动都是简谐运动,而且频率相同三分运动的表达式分别为x = 4]C0S(Gt + 0]) y = 42cos3 + 02) z = A cos(et + 0 )3 3上三式联立,消去变量t得xA2/A1A2+yA2/A2A2+zA2/A3A2-xycos(^2-^1)/A1A2-yzcos(^3-^2)/A2A3-zxcos仲1-»3)/A1A3=1/2[sinA2 ©2-»1)+sinA2 仲3冲2)+sinA2 ©1-^3)不同频率的三维简谐振动的简谐振动的合成比较复杂,很难求出其轨迹方程。

      2•程序代码及实例通过维数判断分类进入子函数区,进行相应参数的计算2.1设计思路返回函数图像输出函数形式的输出和比较2.2 程序代码 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%该程序用于处理大学物理中简谐振动合成的相关问题,编写人:董林 学号:12090312 班 级:理科实验 12-3 时间:2013.11.21%% %%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%% %%%%%%%%%%%%%%% %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%% %该程序能够处理简谐振动的两个(一、维)和三个(三维)合成问题,进行原函数及合成 表函数的达式的输出和比较及函数图像的输出和比较,将繁琐的分散的分类处理用一个函数完成% %有助于加强 MATLAB 软件在物理学中的应用和简谐振动合成部分知识的掌握和理解 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%disp('简谐运动的合成的函数与图像')%%%%%%%%%%%%%%%%%%%%%%%%%准备工作,取消参数赋值,清屏%%%%%%%%%%%%%%%%%%%%%%clear;clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%化参数输入表格%设计输入赋值函数%%%%%%%%%%%%%%%%%%%%%%%%degree=input('please input the degree 1/2/3:');t=-4*pi:0.1:4*pi;%设定变量范围%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%定义全局变量global A1 w1 fai1 A2 w2 fai2 A13 w13 fai13 A23 w23 fai23 A33 w33 fai33;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 三维处理% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%设置参数输入界面if degree==3 %判断,是则进入三维函数处理部分% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%options={'振动振幅A1','角速度w1','振动初相位fail',...'振动振幅 A2',' 竖角速度 w2',' 振动初相位 fai2',' 振动振幅 A1',' 角速度 w1',' 振 动初相位 fai1',};topic=' 空间简谐振动振动合成';lines=1;def={'0','0','0','0','0','0','0','0','0'};% 初始显示值 h=inputdlg(options,topic,lines,def);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 参数输入控制%%%%%%%%%%%%%%%%%%%%%%%%%%%A13=eval(h{1});w13=eval(h{2}); fai13=eval(h{3})*pi/180;A23=eval(h{4});w23=eval(h{5});fai23=eval(h{6})*pi/180;A33=eval(h{4});w33=eval(h{5});fai33=eval(h{6})*pi/180;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 参变量和函数的计算%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x=A13*cos(w13*t+fai13);y=A23*cos(w23*t+fai23);z=A33*cos(w33*t+fai33);subplot(2,3,1);plot(x);title(函数 1');subplot(2,3,2);plot(y);title(函数 2');subplot(2,3,3);plot( z);title(函数 3');subplot(2,3,[4 5 6]);plot3(x,y,z);title(合成函数');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.