
四川省眉山车城中学2025学年高考押题预测卷(数学试题理)试卷.doc
20页四川省眉山车城中学2025学年高考押题预测卷(数学试题理)试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A.36 B.21 C.12 D.62.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是( )A.①④ B.②③ C.①③④ D.①②④3.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为( )A.1 B.2 C.4 D.84.函数(其中,,)的图象如图,则此函数表达式为( )A. B.C. D.5.设为非零向量,则“”是“与共线”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3A. B. C. D.7.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则( )A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知数列是公差为的等差数列,且成等比数列,则( )A.4 B.3 C.2 D.19.椭圆的焦点为,点在椭圆上,若,则的大小为( )A. B. C. D.10.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )A. B.C. D.11.在中所对的边分别是,若,则( )A.37 B.13 C. D.12.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )A.8 B.9 C.10 D.11二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,,则________.14.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______.15.已知多项式满足,则_________,__________.16.已知向量,,则______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,,,且满足.(1)求;(2)若,,求的最大值.18.(12分)已知,,.(1)求的最小值;(2)若对任意,都有,求实数的取值范围.19.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.20.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.21.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.22.(10分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.2.A【解析】根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.3.C【解析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积.【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,∵ 直线经过抛物线的焦点,,是与的交点,又轴,∴可设点坐标为,代入,解得,又∵点在准线上,设过点的的垂线与交于点,,∴.故应选C.【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值.本题难度一般.4.B【解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.5.A【解析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.6.D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.7.D【解析】分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【详解】设, 联立则,因为直线经过C的焦点, 所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。
8.A【解析】根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.9.C【解析】根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.10.D【解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围.【详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,,,,只有是该数列中的项,同理可以得到,,,也是该数列中的项,且有,,或(舍,,根据,,,同理易得,,,,,,,故选:D.【点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题.11.D【解析】直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.12.B【解析】根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。
13.【解析】利用交集定义直接求解.【详解】解:集合奇数,偶数,.故答案为:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.14.【解析】利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是.次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.15. 【解析】∵多项式 满足∴令,得,则∴∴该多项式的一次项系数为∴∴∴令,得故答案为5,7216.【解析】求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(1)(2)【解析】(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,,,由,根据正弦定理和余弦定理得.化简整理得.由勾股定理逆定理得.(2)设,,由(1)的结论知.在中,,由,所以.在中,,由,所以.所以,由,所以当,即时,取得最大值,且最大值为.【点睛】本小题考查正弦定理,余弦定理,勾股定理,解三角形,三角函数性质及其三角恒等变换等基础知识;考查运算求解能力,推理论证能力,化归与转换思想,应用意识.18.(1)2;(2).【解析】(1)化简得,所以,展开后利用基本不等式求最小值即可;(2)由(1),原不等式可转化为,讨论去绝对值即可求得的取值范围.【详解】(1)∵,,∴,∴.∴.当且仅当且即时,.(2)由(1)知,,对任意,都有,∴,即.①当时,有,解得;②当,时,有,解得;③当时,有,解得;综上,,∴实数的取值范围是.【点睛】本题主要考查基本不等式的运用和求解含绝对值的不等式,考查学生的分类思想和计算能力,属于中档题.19.(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径。
