
江西省赣州市十五县市2024届高一数学第二学期期末联考试题含解析.doc
17页江西省赣州市十五县市2024届高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为 A. B.160 C. D.642.已知数列的前项和为,,若存在两项,使得,则的最小值为( )A. B. C. D.3.过点且在两坐标轴上截距相等的直线方程是( )A. B.C.或 D.或4.若向量=,||=2,若·(-)=2,则向量与的夹角( )A. B. C. D.5.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为( )A. B. C. D.6.在中,边,,分别是角,,的对边,且满足,若,则 的值为 A. B. C. D.7.等比数列,…的第四项等于( )A.-24 B.0 C.12 D.248.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A.80 B.40 C.60 D.209.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有( )A. B. C. D.10.已知函数,且不等式的解集为,则函数的图象为( )A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.12.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像; 13.若正实数满足,则的最小值为______.14.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.15.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为 16.已知直线与直线互相平行,则______.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤。
17.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.18.已知四棱台中,平面ABCD,四边形ABCD为平行四边形,,,,,E为DC中点.(1)求证:平面;(2)求证:;(3)求三棱锥的高.(注:棱台的两底面相似)19.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值,并分别写出相应的的值.20.已知函数,,最小值为.(1)求当时,求的值;(2)求的表达式;(3)当时,要使关于t的方程有一个实数根,求实数k的取值范围.21.已知f(α)=,其中α≠kπ(k∈Z).(1)化简f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.参考答案一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.2、B【解析】由,可得两式相减可得公比的值,由可得首项的值,结合可得,,展开后利用基本不等式可得时取得最小值,结合为整数,检验即可得结果.【详解】因为,所以.两式相减化简可得,公比,由可得,,则,解得,,当且仅当时取等号,此时,解得,取整数,均值不等式等号条件取不到,则,验证可得,当时,取最小值为,故选B.【点睛】本题主要考查等比数列的定义与通项公式的应用以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).3、C【解析】设过点A(4,1)的直线方程为y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直线方程为x+y-5=0或x-4y=0.故选C.4、A【解析】根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得: ,得 ,设向量与的夹角为 ,则 所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.5、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.6、A【解析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。
7、A【解析】由x,3x+3,6x+6成等比数列得选A.考点:该题主要考查等比数列的概念和通项公式,考查计算能力.8、B【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样9、C【解析】先根据等比数列的求和公式求出首项,再根据通项公式求解.【详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【点睛】本题考查等比数列的应用,关键在于理解题意.10、B【解析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B二、填空题:本大题共6小题,每小题5分,共30分11、(3)【解析】根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.12、(1)(3)【解析】根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错; 故答案为(1)(3)【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.13、【解析】由得,将转化为,整理,利用基本不等式即可求解。
详解】因为,所以.所以当且仅当,即:时,等号成立所以的最小值为.【点睛】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题14、【解析】设点,由和列方程组解出、的值,可得出向量的坐标.【详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【点睛】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.15、【解析】试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.16、【解析】由两直线平行得,,解出值.【详解】由直线与直线互相平行,得,解得.故答案为:.【点睛】本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比,属于基础题.三、解答。












