好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

如何做几何证明题方法总结.doc

9页
  • 卖家[上传人]:壹****1
  • 文档编号:423871633
  • 上传时间:2023-02-15
  • 文档格式:DOC
  • 文档大小:238KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 如何做几何证明题知识归纳总结: 1. 几何证明是平面几何中的一种重要问题,它对培养学生逻辑思维能力有着很大作用几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系这两类问题常常可以互相转化,如证明平行关系可转化为证明角等或角互补的问题 2. 掌握分析、证明几何问题的常用措施: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐渐向前推动,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具有的条件,然后再把所需的条件当作要证的结论继续推敲,如此逐渐往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于体现,因此,在实际思考问题时,可合并使用,灵活解决,以利于缩短题设与结论的距离,最后达到证明目的 3. 掌握构造基本图形的措施:复杂的图形都是由基本图形构成的,因此要善于将复杂图形分解成基本图形在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

      诸多其他问题最后都可化归为此类问题来证证明两条线段或两角相等最常用的措施是运用全等三角形的性质,其他如线段中垂线的性质、角平分线的性质、等腰三角形的鉴定与性质等也常常用到 例1. 已知:如图1所示,中, 求证:DE=DF 例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF求证:∠E=∠F 二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边相应成比例、三角形中位线定理证明证两条直线垂直,可转化为证一种角等于90°,或运用两个锐角互余,或等腰三角形“三线合一”来证 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线求证:KH∥BC 例4. 已知:如图4所示,AB=AC, 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其他部分等于另一较短线段截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、CE相交于O 求证:AC=AE+CD (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。

      补短法) 例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上, 求证:EF=BE+DF 中考题: 如图8所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、DE 求证:EC=ED 题型展示: 证明几何不等式: 例题:已知:如图9所示, 求证: 实战模拟: 1. 已知:如图11所示,中,,D是AB上一点,DE⊥CD于D,交BC于E,且有求证: 2. 已知:如图12所示,在中,,CD是∠C的平分线 求证:BC=AC+AD 3. 已知:如图13所示,过的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ设M为BC的中点求证:MP=MQ 4. 中,于D,求证:初中几何证明技巧证明两线段相等 1.两全等三角形中相应边相等 2.同一三角形中档角对等边 3.等腰三角形顶角的平分线或底边的高平分底边 4.平行四边形的对边或对角线被交点提成的两段相等 5.直角三角形斜边的中点到三顶点距离相等 6.线段垂直平分线上任意一点到线段两段距离相等 7.角平分线上任一点到角的两边距离相等。

      8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等 *9.同圆(或等圆)中档弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径提成的两段相等 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等 *12.两圆的内(外)公切线的长相等 13.等于同一线段的两条线段相等 证明两个角相等 1.两全等三角形的相应角相等 2.同一三角形中档边对等角 3.等腰三角形中,底边上的中线(或高)平分顶角 4.两条平行线的同位角、内错角或平行四边形的对角相等 5.同角(或等角)的余角(或补角)相等 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角 *7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角 8.相似三角形的相应角相等 *9.圆的内接四边形的外角等于内对角 10.等于同一角的两个角相等 证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角 3.在一种三角形中,若有两个角互余,则第三个角是直角。

      4.邻补角的平分线互相垂直 5.一条直线垂直于平行线中的一条,则必垂直于另一条 6.两条直线相交成直角则两直线垂直 7.运用到一线段两端的距离相等的点段的垂直平分线上 8.运用勾股定理的逆定理 9.运用菱形的对角线互相垂直 *10.在圆中平分弦(或弧)的直径垂直于弦 *11.运用半圆上的圆周角是直角 证明两直线平行 1.垂直于同始终线的各直线平行 2.同位角相等,内错角相等或同旁内角互补的两直线平行 3.平行四边形的对边平行 4.三角形的中位线平行于第三边 5.梯形的中位线平行于两底 6.平行于同始终线的两直线平行 7.一条直线截三角形的两边(或延长线)所得的线段相应成比例,则这条直线平行于第三边 证明线段的和差倍分 1.作两条线段的和,证明与第三条线段相等 2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段 3.延长短线段为其二倍,再证明它与较长的线段相等 4.取长线段的中点,再证其一半等于短线段 5.运用某些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等) 证明 角的和差倍分 1.与证明线段的和、差、倍、分思路相似。

      2.运用角平分线的定义 3.三角形的一种外角等于和它不相邻的两个内角的和 证明线段不等 1.同一三角形中,大角对大边 2.垂线段最短 3.三角形两边之和不小于第三边,两边之差不不小于第三边 4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大 *5.同圆或等圆中,弧大弦大,弦心距小 6.全量不小于它的任何一部分 证明两角的不等1.同一三角形中,大边对大角 2.三角形的外角不小于和它不相邻的任一内角 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大 4.同圆或等圆中,弧大则圆周角、圆心角大 5.全量不小于它的任何一部分 证明比例式或等积式 1.运用相似三角形相应线段成比例 2.运用内外角平分线定理 3.平行线截线段成比例 4.直角三角形中的比例中项定理即射影定理 5.与圆有关的比例定理---相交弦定理、切割线定理及其推论 6.运用比利式或等积式化得 1、已知:AB=CD、AD//BC,OA=OD,求证:OB=OC2、已知:AB=CD、AD//BC,OA=OD,求证:OB=OC 3、在菱形ABCD中,GE⊥CD、HF⊥AD,求证:GE=HF4、 图,平行四边形ABCD中,AE=CF,求证:∠EBF=∠FDE5、在矩形ABCD中,∠ABC、∠CDA的平分线交AD、BC于F、E,求证:BE=DF、DE=BF6、如图,点E 是正方形ABCD内一点 ,△BEC绕点C顺时针方向旋转90°到△DFC的位置,求证:BE⊥DF 7.如图,E、F是□ABCD的对角线AC上两点,AE=CF.求证:(1)△ABE≌△CDF.(2)BE∥DF.8.如图,在□ABCD中,点E、F在对角线AC上,且AE=CF, 请你以F为一种端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可).(1)连结_________,(2)猜想______=________.(3)证明: 附加1.如图,已知正方形ABCD中,E为BC上一点, 将正方形折叠起来,使点A和点E重叠,折痕为MN,若tan∠AEN=,DC+CE=10.(1)求△ANE的面积.(2)求sin∠ENB的值.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.