好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学直线和圆知识点总结.doc

8页
  • 卖家[上传人]:工****
  • 文档编号:469579942
  • 上传时间:2023-09-20
  • 文档格式:DOC
  • 文档大小:340.51KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 直线和圆一.直线1.斜率与倾斜角:,(1)时,;(2)时,不存在;(3)时,(4)当倾斜角从增加到时,斜率从增加到;当倾斜角从增加到时,斜率从增加到2.直线方程(1)点斜式:(2)斜截式:(3)两点式:(4)截距式:(5)一般式:3.距离公式(1)点,之间的距离:(2)点到直线的距离:(3)平行线间的距离:与的距离:4.位置关系(1)截距式:形式重合:     相交:平行: 垂直:(2)一般式:形式重合:且且平行:且且垂直: 相交:5.直线系表示过两直线和交点的所有直线方程(不含)二.圆1.圆的方程(1)标准形式:()(2)一般式:()(3)参数方程:(是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以,为直径的圆的方程是:2.位置关系(1)点和圆的位置关系:当时,点在圆内部当时,点在圆上当时,点在圆外(2)直线和圆的位置关系:判断圆心到直线的距离与半径的大小关系当时,直线和圆相交(有两个交点);当时,直线和圆相切(有且仅有一个交点);当时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距与两圆半径之和,半径之差()的大小关系当时,两圆相离,有4条公切线;当时,两圆外切,有3条公切线;当时,两圆相交,有2条公切线;当时,两圆内切,有1条公切线;当时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:例1若圆x2+y2=1与直线y=kx+2没有公共点,则实数k的取值范围是________.解析:由题意知 >1,解得-<k<.答案:(-, )例2已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=0例3设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2,则实数m的值是________.解析:由题意得,圆心(1,2)到直线x-my-1=0的距离d==1,即=1,解得m=±.答案:±例4若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.解析:由题意可知圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为2 ,由于a2+b2=c2,所以所求弦长为2.答案:2例5已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.(1)若|AB|=,求|MQ|及直线MQ的方程;(2)求证:直线AB恒过定点.解:(1)设直线MQ交AB于点P,则|AP|=,又|AM|=1,AP⊥MQ,AM⊥AQ,得|MP|= =,又∵|MQ|=,∴|MQ|=3.设Q(x,0),而点M(0,2),由=3,得x=±,则Q点的坐标为(,0)或(-,0).从而直线MQ的方程为2x+y-2=0或2x-y+2=0.(2)证明:设点Q(q,0),由几何性质,可知A,B两点在以QM为直径的圆上,此圆的方程为x(x-q)+y(y-2)=0,而线段AB是此圆与已知圆的公共弦,相减可得AB的方程为qx-2y+3=0,所以直线AB恒过定点.例6过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为 ,则直线l的斜率为________.解析:将圆的方程化成标准方程为(x-1)2+(y-1)2=1,其圆心为(1,1),半径r=1.由弦长为得弦心距为. 设直线方程为y+2=k(x+1),即kx-y+k-2=0,则=,化简得7k2-24k+17=0,得k=1或k=.答案:1或例7圆x2-2x+y2-3=0的圆心到直线x+y-3=0的距离为________.解析:圆心(1,0),d==1.答案:1例8圆心在原点且与直线x+y-2=0相切的圆的方程为____________________.解析:设圆的方程为x2+y2=a2(a>0)∴=a,∴a=,∴x2+y2=2.答案:x2+y2=2例9已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________________.圆C的方程为x2+y2+Dx+F=0,则解得圆C的方程为x2+y2-4x-6=0.[答案] (1)C (2)x2+y2-4x-6=0例10 (1)与曲线C:x2+y2+2x+2y=0相内切,同时又与直线l:y=2-x相切的半径最小的圆的半径是________. (2)已知实数x,y满足(x-2)2+(y+1)2=1则2x-y的最大值为________,最小值为________.解析:(1)依题意,曲线C表示的是以点C(-1,-1)为圆心,为半径的圆,圆心C(-1,-1)到直线y=2-x即x+y-2=0的距离等于=2,易知所求圆的半径等于=.(2)令b=2x-y,则b为直线2x-y=b在y轴上的截距的相反数,当直线2x-y=b与圆相切时,b取得最值.由=1.解得b=5±,所以2x-y的最大值为5+,最小值为5-.答案:(1) (2)5+ 5-例11已知x,y满足x2+y2=1,则的最小值为________.解析:表示圆上的点P(x,y)与点Q(1,2)连线的斜率,所以的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1)即kx-y+2-k=0.由=1得k=,结合图形可知,≥,故最小值为.答案:例12已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是________.解析:lAB:x-y+2=0,圆心(1,0)到l的距离d=,则AB边上的高的最小值为-1.故△ABC面积的最小值是×2×=3-.答案:3-例13平面直角坐标系xoy中,直线截以原点O为圆心的圆所得的弦长为(1)求圆O的方程;(2)若直线与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线的方程;(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由. 解: ⑴因为点到直线的距离为, 所以圆的半径为, 故圆的方程为. ⑵设直线的方程为,即, 由直线与圆相切,得,即, , 当且仅当时取等号,此时直线的方程为. ⑶设,,则,,, 直线与轴交点,, 直线与轴交点,, , 故为定值2. 例14圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为,直线l交圆于A、B两点. (1)当=时,求AB的长; (2)当弦AB被点P平分时,求直线l的方程. 解:(1)当=时,kAB=-1,直线AB的方程为y-2=-(x+1),即x+y-1=0.故圆心(0,0)到AB的距离d==,从而弦长|AB|=2=. (2)设A(x1,y1),B(x2,y2),则x1+x2=-2,y1+y2=4. 由 两式相减得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0, 即-2(x1-x2)+4(y1-y2)=0, ∴kAB=. ∴直线l的方程为y-2=(x+1),即x-2y+5=0.例15已知半径为5的动圆C的圆心在直线l:x-y+10=0上. (1)若动圆C过点(-5,0),求圆C的方程;(2)是否存在正实数r,使得动圆C中满足与圆O:x2+y2=r2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.解: (1)依题意,可设动圆C的方程为(x-a)2+(y-b)2=25,其中圆心(a,b)满足a-b+10=0. 又∵动圆过点(-5,0),∴(-5-a)2+(0-b)2=25. 解方程组, 可得或, 故所求圆C的方程为(x+10)2+y2=25或(x+5)2+(y-5)2=25. (2)圆O的圆心(0,0)到直线l的距离d==5. 当r满足r+5<d时,动圆C中不存在与圆O:x2+y2=r2相外切的圆; 当r满足r+5>d时,r每取一个数值,动圆C中存在两个圆与圆O:x2+y2=r2相外切; 当r满足r+5=d,即r=5-5时,动圆C中有且仅有1个圆与圆O:x2+y2=r2相外切.题目1.自点作圆的切线,则切线的方程为 .2.求与圆外切于点,且半径为的圆的方程.3.若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16相切于点M,则PM的最小值 .4.设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足·=0.(1)求m的值;(2)求直线PQ的方程.5.已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.6. 已知曲线C:x2+y2-4ax+2ay-20+20a=0.(1)证明:不论a取何实数,曲线C必过定点;(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上;(3)若曲线C与x轴相切,求a的值.。

      点击阅读更多内容
      相关文档
      2026版高考化学第一轮知识梳理第九章有机化学基础第54讲物质制备的综合实验探究考点1无机物的制备实验探究.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点1脂肪烃的结构与性质.docx 2026版高考化学第一轮知识梳理第八章第40讲反应过程中微粒浓度变化及图像分析考点1溶液中微粒浓度的关系及分析.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第11讲铁及其氧化物氢氧化物.docx 2026版高考化学第一轮真题演练第九章有机化学基础第46讲醇酚和醛酮.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第55讲化学综合实验探究考点1物质含量或组成的测定.docx 2026版高考化学第一轮考点突破第一章化学物质及其变化第2讲离子反应离子方程式考点1电解质及其电离.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点2芳香烃的结构与性质化石燃料的综合利用.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第52讲离子的检验物质的鉴别与推断考点1常见离子的检验.docx 2026版高考化学第一轮知识梳理第八章水溶液中的离子反应与平衡第36讲弱电解质的电离平衡考点1电离平衡及影响因素.docx 2026版高考化学第一轮知识梳理第六章化学反应与能量第28讲反应热的测定及计算考点2盖斯定律及应用.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第12讲铁盐和亚铁盐含铁物质的转化.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第43讲考点1碳原子的成键特点有机化合物分子的空间结构.docx 2026版高考化学第一轮真题演练第九章有机化学基础第47讲羧酸及其衍生物.docx 2026版高考化学第一轮考点突破第四章非金属及其化合物第18讲硫酸含硫物质之间的转化考点1硫酸硫酸根离子的检验.docx 2026版高考化学第一轮真题演练第一章化学物质及其变化第4讲氧化还原反应的概念和规律.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第47讲羧酸及其衍生物考点1羧酸酯的结构与性质.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第9讲钠及其氧化物.docx 2026版高考化学第一轮考点突破第七章化学反应速率与化学平衡第33讲化学平衡常数及转化率考点2化学平衡常数及转化率的计算.docx 2026版高考化学第一轮考点突破第一章化学物质及其变化第2讲离子反应离子方程式考点3离子方程式的正误判断.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.