好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2025年重庆市九校数学高三第一学期期末教学质量检测试题含解析.doc

19页
  • 卖家[上传人]:泽玥15****2海阔
  • 文档编号:594009218
  • 上传时间:2024-10-15
  • 文档格式:DOC
  • 文档大小:1.94MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2025年重庆市九校数学高三第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A. B. C. D.2.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )A. B. C. D.3.设等比数列的前项和为,若,则的值为( )A. B. C. D.4.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是( )A. B. C. D.5.已知集合,集合,那么等于( )A. B. C. D.6.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )A. B.C. D.以上情况均有可能7.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )A. B. C. D.8.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A.2对 B.3对C.4对 D.5对9.设a=log73,,c=30.7,则a,b,c的大小关系是(  )A. B. C. D.10.已知x,,则“”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.在中,点D是线段BC上任意一点,,,则( )A. B.-2 C. D.212.若不相等的非零实数,,成等差数列,且,,成等比数列,则( )A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。

      13.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.14.直线是曲线的一条切线为自然对数的底数),则实数__________.15.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.16.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)在中,内角,,所对的边分别是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.19.(12分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.20.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.21.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.22.(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.2、D【解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.3、C【解析】求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【详解】设等比数列的公比为,,,,因此,.故选:C.【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.4、C【解析】化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.5、A【解析】求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.6、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,.故选:.【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.7、B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.8、C【解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.9、D【解析】,,得解.【详解】,,,所以,故选D【点睛】比较不同数的大小,找中间量作比较是一种常见的方法.10、D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.11、A【解析】设,用表示出,求出的值即可得出答案.【详解】设由,,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.12、A【解析】由题意,可得,,消去得,可得,继而得到,代入即得解【详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

      13、【解析】由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.14、【解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.15、【解析】根据圆的性质可知段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,,和的中点坐标为,且段的垂直平分线上,,即,同理可得:,,,点的轨迹方程为.故答案为:.【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.16、【解析】先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差.【详解】解:某地区连续5天的最低气温(单位:依次为8,,,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1.故答案为:1.【点睛】本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根据正弦定理先求得边c,然后由余弦定理可求得边b;(Ⅱ)结合二倍角公式及和差公式,即可求得本题答案.【详解】(Ⅰ)因为,由正弦定理可得,,又,所以,所以根据余弦定理得,,解得,;(Ⅱ)因为,所以,,,则.【点睛】。

      点击阅读更多内容
      相关文档
      四川省成都市2025年中考数学真题试卷附同步解析.docx 四川省成都市锦江区师一学校2024_2025学年下学期八年级数学期中考试卷.docx 四川省成都市2025年中考数学真题试卷含同步解析.pptx 2026版高考化学第一轮知识梳理第九章有机化学基础第54讲物质制备的综合实验探究考点1无机物的制备实验探究.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点1脂肪烃的结构与性质.docx 2026版高考化学第一轮知识梳理第八章第40讲反应过程中微粒浓度变化及图像分析考点1溶液中微粒浓度的关系及分析.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第11讲铁及其氧化物氢氧化物.docx 2026版高考化学第一轮真题演练第九章有机化学基础第46讲醇酚和醛酮.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第55讲化学综合实验探究考点1物质含量或组成的测定.docx 2026版高考化学第一轮考点突破第一章化学物质及其变化第2讲离子反应离子方程式考点1电解质及其电离.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点2芳香烃的结构与性质化石燃料的综合利用.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第52讲离子的检验物质的鉴别与推断考点1常见离子的检验.docx 2026版高考化学第一轮知识梳理第八章水溶液中的离子反应与平衡第36讲弱电解质的电离平衡考点1电离平衡及影响因素.docx 2026版高考化学第一轮知识梳理第六章化学反应与能量第28讲反应热的测定及计算考点2盖斯定律及应用.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第12讲铁盐和亚铁盐含铁物质的转化.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第43讲考点1碳原子的成键特点有机化合物分子的空间结构.docx 2026版高考化学第一轮真题演练第九章有机化学基础第47讲羧酸及其衍生物.docx 2026版高考化学第一轮考点突破第四章非金属及其化合物第18讲硫酸含硫物质之间的转化考点1硫酸硫酸根离子的检验.docx 2026版高考化学第一轮真题演练第一章化学物质及其变化第4讲氧化还原反应的概念和规律.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第47讲羧酸及其衍生物考点1羧酸酯的结构与性质.docx
      猜您喜欢
      上海市重点中学2025年高二化学第一学期期末经典模拟试题含解析.doc 2025年福建省龙海市浮宫中学高一生物第一学期期末教学质量检测模拟试题含解析.doc 2025年福建省龙岩市第一中学高三语文第一学期期末复习检测模拟试题含解析.doc 2025年豫南九校物理高一第一学期期末监测模拟试题含解析.doc 2025年许昌市重点中学数学高三第一学期期末联考试题含解析.doc 2025年贵州省六盘水市外国语学校物理高一第一学期期末监测模拟试题含解析.doc 2025年贵州省黔东南州高一化学第一学期期中教学质量检测模拟试题含解析.doc 2025年贵州省毕节市织金第一中学高二物理第一学期期末达标测试试题含解析.doc 2025年贵州省遵义凤冈二中化学高二第一学期期末预测试题含解析.doc 2025年贵州省遵义市湄潭县湄江中学语文高三第一学期期末联考试题含解析.doc 2025年贵州省铜仁市西片区高中教育联盟高二物理第一学期期中学业质量监测试题含解析.doc 2025年福建省龙岩市物理高三上期中复习检测试题含解析.doc 2025年辽宁省本溪市第一中学物理高三上期末质量检测模拟试题含解析.doc 2025年福建省龙岩高中物理高一第一学期期末检测模拟试题含解析.doc 2025年福建闽侯第六中学物理高三上期末教学质量检测模拟试题含解析.doc 2025年福建省霞浦县第一中学化学高一第一学期期末联考试题含解析.doc 2025年郴州市重点中学高一生物第一学期期末综合测试试题含解析.doc 2025年科大附中化学高一上期末综合测试模拟试题含解析.doc 2025年莆田市重点中学高一生物第一学期期末检测试题含解析.doc 2025年贵州省六盘水市六枝特区七中生物高一上期末教学质量检测模拟试题含解析.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.