好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2021年二项式知识点+十大问题+练习.pdf

11页
  • 卖家[上传人]:c****
  • 文档编号:208478188
  • 上传时间:2021-11-07
  • 文档格式:PDF
  • 文档大小:184.26KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 学习必备精品知识点1二项式定理:011()()nnnrnrrnnnnnnabC aC abC abC bnN,2基本概念:二项式展开式:右边的多项式叫做()nab的二项展开式二项式系数 : 展开式中各项的系数rnC(0,1,2, )rn. 项数:共(1)r项,是关于a与b的齐次多项式通项:展开式中的第1r项rnrrnC ab叫做二项式展开式的通项用1rnrrrnTC ab表示3注意关键点:项数:展开式中总共有(1)n项顺序:注意正确选择a,b, 其顺序不能更改)nab与()nba是不同的指数:a的指数从n逐项减到0,是降幂排列b的指数从0逐项减到n,是升幂排列各项的次数和等于n. 系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,.rnnnnnnCCCCC项的系数是a与b的系数(包括二项式系数)4常用的结论:令1,abx0122(1)()nrrnnnnnnnxCC xC xC xC xnN令1,abx0122(1)( 1)()nrrnnnnnnnnxCC xC xC xC xnN5性质: 二 项 式 系 数 的 对 称 性 : 与 首 末 两 端 “ 对 距 离 ” 的 两 个 二 项 式 系 数 相 等 , 即0nnnCC, 1kknnCC二项式系数和: 令1ab, 则二项式系数的和为0122rnnnnnnnCCCCC,变形式1221rnnnnnnCCCC。

      奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中, 令1,1ab,则0123( 1 )( 1 1 )0nnnnnnnnCCCCC,从而得到:0242132111222rrnnnnnnnnnCCCCCCC奇数项的系数和与偶数项的系数和:精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 11 页 - - - - - - - - -学习必备精品知识点0011222012012001122202121001230123()()1,(1)1,(1)nnnnnnnnnnnnnnnnnnnnnnnnnnnnaxC a xC axC axC a xaa xa xa xxaC a xC axC a xC a xa xa xa xaxaaaaaaxaaaaaa令则令则024135(1)(1),()2(1)(1),()2nnnnnnaaaaaaaaaaaa得奇数项的系数和得偶数项的系数和二项式系数的最大项:如果二项式的幂指数n是偶数时,则中间一项的二项式系数2nnC取得最大值如果二项式的幂指数n是奇数时,则中间两项的二项式系数12nnC,12nnC同时取得最大值。

      系数的最大项:求()nabx展开式中最大的项,一般采用待定系数法设展开式中各项系数分别为121,nAAA,设第1r项系数最大,应有112rrrrAAAA,从而解出r来精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 11 页 - - - - - - - - -学习必备精品知识点专题一题型一:二项式定理的逆用;例:12321666 .nnnnnnCCCC解:012233(16)6666nnnnnnnnCCCCC与已知的有一些差距,123211221666(666 )6nnnnnnnnnnnCCCCCCC0122111(6661)(16)1(71)666nnnnnnnnCCCC练:1231393 .nnnnnnCCCC解:设1231393nnnnnnnSCCCC,则122330122333333333331(13)1nnnnnnnnnnnnnnnSCCCCCCCCC(13)14133nnnS题型二:利用通项公式求nx的系数;例:在二项式3241()nxx的展开式中倒数第3项的系数为45,求含有3x的项的系数?解:由条件知245nnC,即245nC,2900nn,解得9()10nn舍去 或,由2102110343411010()()rrrrrrrTCxxCx,由题意1023,643rrr解得,则含有3x的项是第7项6336 110210TC xx, 系数为210。

      练:求291()2xx展开式中9x的系数?解:2918 218 31999111()()()()222rrrrrrrrrrrTCxC xxCxx,令1839r, 则3r故9x的系数为339121()22C题型三:利用通项公式求常数项;精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 3 页,共 11 页 - - - - - - - - -学习必备精品知识点例:求二项式2101()2xx的展开式中的常数项?解:52021021101011()()( )22rrrrrrrTCxCxx,令52002r,得8r,所以88910145( )2256TC练:求二项式61(2)2xx的展开式中的常数项?解:666216611(2 )( 1) ()( 1)2( )22rrrrrrrrrrTCxCxx,令620r,得3r,所以3346( 1)20TC练:若21()nxx的二项展开式中第5项为常数项,则_.n解:4244421251()()nnnnTCxC xx,令2120n,得6n. 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式93()xx展开式中的有理项?解:12719362199()()( 1)rrrrrrrTCxxC x, 令276rZ,(09r) 得39rr或,所以当3r时,2746r,334449( 1)84TC xx,当9r时,2736r,3933109( 1)TC xx。

      题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若2321()nxx展开式中偶数项系数和为256,求n. 解:设2321()nxx展开式中各项系数依次设为01,naaa1x令,则有010,naaa,1x令, 则有0123( 1)2 ,nnnaaaaa将 -得:1352()2 ,naaa11352,naaa有题意得,1822562n,9n精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 11 页 - - - - - - - - -学习必备精品知识点练:若35211()nxx的展开式中,所有的奇数项的系数和为1024,求它的中间项解:0242132112rrnnnnnnnnCCCCCCC,121024n,解得11n所以中间两个项分别为6,7nn,5654355 1211() ()462nTCxxx,61156 1462Tx题型六:最大系数,最大项;例:已知1(2 )2nx,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,nnnCCCnn解出714nn或,当7n时,展开式中二项式系数最大的项是45TT和34347135( ) 2,22TC的系数,434571( ) 270,2TC的系数当14n时,展开式中二项式系数最大的项是8T,7778141C( ) 234322T 的系数。

      练:在2()nab的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n,则中间一项的二项式系数最大,即2112nnTT,也就是第1n项练:在31()2nxx的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?解:只有第5项的二项式最大,则152n,即8n, 所以展开式中常数项为第七项等于6281()72C例:写出在7()ab的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项) 的二项式系数相等,且同时取得最大值,从而有34347TC a b的系数最小,43457TC a b系数最大例:若展开式前三项的二项式系数和等于79,求1(2 )2nx的展开式中系数最大的项?精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 5 页,共 11 页 - - - - - - - - -学习必备精品知识点解:由01279,nnnCCC解出12n, 假设1rT项最大,12121211(2 )( ) (1 4 )22xx1111212111212124444rrrrrrrrrrrrAACCAACC,化简得到9.410.4r,又012r,10r,展开式中系数最大的项为11T,有121010101011121( )4168962TCxx练:在10(12 )x的展开式中系数最大的项是多少?解:假设1rT项最大,1102rrrrTCx111010111121010222(11)12(10)22,rrrrrrrrrrrrCCAArrAArrCC解得,化简得到6.37.3k,又010r,7r,展开式中系数最大的项为7777810215360.TCxx题型七:含有三项变两项;例:求当25(32)xx的展开式中x的一次项的系数?解法:2525(32)(2)3 xxxx,2515(2)(3 )rrrrTCxx,当且仅当1r时,1rT的展开式中才有x 的一次项, 此时124125(2) 3rTTCxx,所以x得一次项为144542 3C Cx它的系数为144542 3240C C。

      解法:255505145051455555555(32)(1) (2)()(22 )xxxxC xC xCC xC xC故展开式中含x的项为4554455522240C xCC xx,故展开式中x的系数为240. 练:求式子31(2)xx的常数项?解:3611(2)()xxxx,设第1r项为常数项,则66261661( 1)()( 1)rrrrrrrTCxCxx,得620r,3r, 333 16( 1)20TC. 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 6 页,共 11 页 - - - - - - - - -学习必备精品知识点题型八:两个二项式相乘;例:342(12 ) (1)xxx求展开式中的系数 .解:333(12 )(2 )2,mmmmmxxx的展开式的通项是CC444(1)C()C1,0,1,2,3,0,1,2,3, 4,nnnnnxxxmn的展开式的通项是其中342,02,11,20,(12 ) (1)mnmnmnmnxx令则且且且因此20022111122003434342( 1)2( 1)2( 1)6xCCCCCC的展开式中的系数等于. 练:610341(1) (1)xx求展开式中的常数项.解:436103341261061041(1) (1)mnmnmnmnxC xC xCCxx展开式的通项为0,3,6,0,1,2,6,0,1,2,10,43 ,0,4,8,mmmmnmnnnn其中当且仅当即或或0034686106106104246CCCCCC时得展开式中的常数项为. 练:2*31(1)(),28,_.nxxxnNnnx已知的展开式中没有常数项且则解:3431()CC,nrn rrrnrnnxxxxx展开式的通项为通项分别与前面的三项相乘可得44142C,C,C,28rnrrnrrnrnnnxxxn展开式中不含常数项441424,83,72,6,5.nrnrnrnnnn且且,即且且题型九:奇数项的系数和与偶数项的系数和;例:2006(2),2,_.xxSxS在的二项展开式中含 的奇次幂的项之和为当时解:2006123200601232006(2)xaa xa xa xax设=-2006123200601232006(2)xaa xa xa xax=-精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 7 页,共 11 页 - - - - - - - - -学习必备精品知识点3520052006200613520052()(2)(2)a xa xa xaxxx得2006200620061(2)( )(2)(2)2xS xxx展开式的奇。

      点击阅读更多内容
      相关文档
      5.江苏省扬州市2023-2024学年高一上学期1月期末检测数学试题.docx 山西省长治市2023-2024学年高二上学期期末化学试题.docx 1.甘肃省张掖市某重点校2023-2024学年高一上学期9月月考数学试题.docx 山东省日照市第一中学2023-2024学年高一上学期12月月考数学试卷.docx 5.湖北省武汉市部分重点中学2023-2024学年高二上学期期中联考数学试题.docx 2.河南省部分名校2023-2024学年高二上学期1月期末考试数学试题.docx 山东省日照市第一中学2023-2024学年高二上学期第二次单元过关测试(12月)数学试题.docx 四川省德阳市高中2023-2024学年高二上学期期末教学高中政治试题.docx 3.安徽省合肥市普通高中联盟2023-2024学年高二上学期1月期末联考数学试题.docx 12.山西省晋中市2023-2024学年高一上学期期末调研数学试题.docx 天津市四校2023-2024学年高一上学期期末联考政治试题.docx 4.山西省太原市2023-2024学年高二上学期期中学业诊断数学试卷.docx 4.甘肃省武威市2023-2024学年高二下学期6月月考数学试题.docx 山东省威海市2023-2024学年高二上学期期末考试化学试题.docx 3.福建省莆田市五校联盟2023-2024学年高二上学期期中数学试题.docx 9.安徽省马鞍山市2023-2024学年高一上学期2月期末数学试题.docx 7.山西省2023-2024学年高二上学期11月期中考试数学试题.docx 9.重庆第十一中学校2023-2024学年高二下学期3月月考数学试题.docx 3.湖南省名校联考联合体2023-2024学年高一上学期期末考试数学试题.docx 4.江苏省徐州市2023-2024学年下学期高二年级第三次检测数学试题.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.