
2025学年甘肃省合水县第一中学数学高二上期末检测模拟试题含解析.doc
16页2025学年甘肃省合水县第一中学数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.2.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为( )A. B.C. D.3.已知数列满足,且,那( )A.19 B.31C.52 D.1044.对于实数a,b,c,下列命题中的真命题是( )A.若,则 B.,则C.若,,则, D.若,则5.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线6.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是( )A.相交 B.平行C.垂直 D.不能确定7.已知空间四个点,,,,则直线AD与平面ABC所成的角为( )A. B.C. D.8.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.在等比数列中,,,则等于( )A.90 B.30C.70 D.4010.已知抛物线=的焦点为F, M、N是抛物线上两个不同的点,若,则线段MN的中点到y轴的距离为( )A.8 B.4C. D.911.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.12.曲线在处的切线如图所示,则( )A.0 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.某校有高一学生人,高二学生人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为的样本,已知从高一学生中抽取人,则________14.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.15.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______16.直线被圆截得的弦长为_______三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.18.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUT xIF THENELSEIF THENELSEEND IFEND IFPRINT yEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.19.(12分)数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.20.(12分)在平面直角坐标系内,椭圆E:过点,离心率为(1)求E的方程;(2)设直线(k∈R)与椭圆E交于A,B两点,在y轴上是否存在定点M,使得对任意实数k,直线AM,BM的斜率乘积为定值?若存在,求出点M的坐标;若不存在,说明理由21.(12分)如图,四棱锥的底面是正方形,PD⊥底面ABCD,M为BC的中点,(1)证明:;(2)设平面平面,求l与平面MND所成角的正弦值22.(10分)已知复数,是实数.(1)求复数z;(2)若复数在复平面内所表示的点在第二象限,求实数m的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C2、A【解析】先求得点坐标,然后求得的角平分线所在的直线的方程.【详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A3、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D4、C【解析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C5、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.7、A【解析】根据向量法求出线面角即可.【详解】设平面的法向量为,直线AD与平面ABC所成的角为令,则则故选:A【点睛】本题主要考查了利用向量法求线面角,属于中档题.8、B【解析】,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.9、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D10、B【解析】过分别作垂直于准线,垂足为,则由抛物线的定义可得,再过MN的中点作垂直于准线,垂足为,然后利用梯形的中位线定理可求得结果【详解】抛物线=的焦点,准线方程为直线如图,过分别作垂直于准线,垂足为,过MN的中点作垂直于准线,垂足为,则由抛物线的定义可得,因为,所以,因为是梯形的中位线,所以,所以线段MN的中点到y轴的距离为4,故选:B11、B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B12、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标 ,再写出切线方程:.二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】根据分层抽样的等比例性质列方程,即可样本容量n.【详解】由分层抽样的性质知:,可得.故答案为:14、 ①. ②.【解析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为: 【点睛】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大15、 ①.##(0,1.5) ②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;16、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1)证明见解析,(2)证明见解析【解析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.18、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】。
