
高考高中数学正态分布.ppt
23页引入引入 正态分布在统计学中是很重要的分布我们知正态分布在统计学中是很重要的分布我们知道,离散型随机变量最多取可列个不同值,它等于道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于某一特定实数的概率可能大于0,人们感兴趣的是,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为于任何一个实数的概率都为0,所以通常感兴趣的,所以通常感兴趣的是它落在某个区间的概率是它落在某个区间的概率离散型随机变量的概率离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(曲线)描述分布规律用密度函数(曲线)描述频率分布频率分布直方图直方图数数 学学 情情 景景第一步:分组第一步:分组确定组数,组距?确定组数,组距?区区间间号号区区间间频频数数频频率率累累积频积频率率频频率率/组组距距1153.5~157.550.05950.05950.0152157.5~161.580.09520.15470.0243161.5~165.5100.11900.27380.0304165.5~169.5150.17860.45340.0455169.5~173.5180.21430.66670.0546173.5~1775180.17860.84520.0457177.5~181.580.09520.94050.0248181.5~185.550.059510.015第二步:列出频率分布表第二步:列出频率分布表xy频率频率/组距组距中间高,两头低,中间高,两头低,左右大致对称左右大致对称第三步:作出频率分布直方图第三步:作出频率分布直方图频率频率组距组距产品产品尺寸尺寸((mm))ab 若数据无限增多且组距无限缩小,那么若数据无限增多且组距无限缩小,那么频率分布频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为此曲线为概率密度曲线概率密度曲线..总体在区间总体在区间 内取值的概率内取值的概率概率密度曲线概率密度曲线概率密度曲线概率密度曲线的形状特征的形状特征.. “中间高,两头低,中间高,两头低,左右对称左右对称”” 知识点一:正态密度曲线知识点一:正态密度曲线 上图中概率密度曲线具有上图中概率密度曲线具有““中间高,两头中间高,两头低低””的特征,像这种类型的概率密度曲线的特征,像这种类型的概率密度曲线, ,叫叫做做““正态密度曲线正态密度曲线””,它的函数表达式是,它的函数表达式是知识点二:正态分布与密度曲线知识点二:正态分布与密度曲线 式中的实数式中的实数 、、 是参数是参数,分别表示总分别表示总体的体的平均数与标准差平均数与标准差.不同的不同的 对应着不同的对应着不同的正态密度曲线正态密度曲线)0(>(1)当 = 时,函数值为最大.(3) 的图象关于 对称.(2) 的值域为 (4)当 ∈ 时 为增函数.当 ∈ 时 为减函数.正态密度曲线的图像特征μ(-(-∞,,μ]((μ,,+∞))xX=μσ 正态曲线 =μabXY知识点:正态分布知识点:正态分布2.正态分布的定义正态分布的定义:如果对于任何实数如果对于任何实数 a
为形状参数σ=0.5012-1-2xy-33X=μσ=1σ=2(6)当当μ一定时,曲线的形状由一定时,曲线的形状由σ确定确定 .σ越大,曲线越越大,曲线越“矮胖矮胖”,表示总体的分布越分散;,表示总体的分布越分散;σ越小,曲线越越小,曲线越“瘦高瘦高”,表示总体的分布越集中,表示总体的分布越集中.((5)当)当 x<μ时时,曲线上升曲线上升;当当x>μ时时,曲线下降曲线下降.并且当曲线并且当曲线向左、右两边无限延伸时向左、右两边无限延伸时,以以x轴为渐近线轴为渐近线,向它无限靠近向它无限靠近. 3 3、正态曲线的性质、正态曲线的性质正态曲线下的面积规律正态曲线下的面积规律•X轴与正态曲线所夹面积恒等于轴与正态曲线所夹面积恒等于1 •对称区域面积相等对称区域面积相等S(-,-X)S(X,)=S(-,-X)正态曲线下的面积规律正态曲线下的面积规律•对称区域面积相等对称区域面积相等S(-x1, -x2)-x1 -x2 x2 x1S(x1,x2)=S(-x2,-x1)4、特殊区间的概率、特殊区间的概率:m m-am m+ax=μ若若X~N ,则对于任何实数则对于任何实数a>0,概率概率 为如图中的阴影部分的面积,对于固定的为如图中的阴影部分的面积,对于固定的 和和 而言,该面而言,该面积随着积随着 的减少而变大。
这说明的减少而变大这说明 越小越小, 落在区间落在区间 的概率越大,即的概率越大,即X集中在集中在 周围概率越大周围概率越大特别地有特别地有 我们从上图看到,正态总体在我们从上图看到,正态总体在 以外取值的概率只有以外取值的概率只有4.6%,在%,在 以外以外取值的概率只有取值的概率只有0.3 % 由于这些概率值很小(一般不超过由于这些概率值很小(一般不超过5 %% ),),通常称这些情况发生为通常称这些情况发生为小概率事件小概率事件1、已知、已知X~N (0,1),则,则X在区间在区间 内取值的概率内取值的概率等于(等于( ))A.0.9544 B.0.0456 C.0.9772 D.0.02282、设离散型随机变量、设离散型随机变量X~N(0,1),则则 = , = .3、、若若X~N(5,1),求求P(6
