好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

九年级数学锐角三角函数.docx

21页
  • 卖家[上传人]:pu****.1
  • 文档编号:407485177
  • 上传时间:2022-08-10
  • 文档格式:DOCX
  • 文档大小:289.77KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 锐角三角函数与解直角三角形【考纲要求】1•理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直 角三角形有关的实际问题•题型有选择题、填空题、解答题,多以中、低档题出现;2•命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问 题.【知识网络】解直命三席形【考点梳理】 考点一、锐角三角函数的概念如图所示,在RtAABC中,ZC = 90°,ZA所对的边BC记为a,叫做ZA的对边,也叫做ZB 的邻边,ZB所对的边AC记为b,叫做ZB的对边,也是ZA的邻边,直角C所对的边AB记为c, 叫做斜边.锐角A的对边与斜边的比叫做ZA的正弦,记作sinA,即sin A =ZA的对边斜边锐角A的邻边与斜边的比叫做ZA的余弦,记作cosA,即cos A =ZA的邻边斜边锐角A的对边与邻边的比叫做ZA的正切,记作tanA,即tan A =ZA的对边ZA的邻边同理sin B =ZB的对边斜边cos B =ZB的邻边斜边ZB的对边=bZB的邻边—a'要点诠释:(1) 正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条 线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2) sinA, cosA, tanA分别是一个完整的数学符号,是一个整体,不能写成血乂,匚^・£ , tan •山,不能理解成sin与ZA, cos与ZA, tan与ZA的乘积.书写时习惯上省略ZA的角的记号 “Z”,但对三个大写字母表示成的角(如ZAEF),其正切应写成“tanZAEF”,不能写成“tanAEF” ;另外,〔如卫尸、(co胡尸、(t州丄尸常写成乱『川、弱『百、t泌$川.(3) 任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4) 由锐角三角函数的定义知:当角度在0°VZAV90。

      之间变化时,0 € sin / C1 , 0吒匚貝cl , tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:三角菌涂、30°45c60'90esin(J0117227321cos a12722170tan a0T173小存在要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应 用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若sin^ =(2)仔细研究表中数值的规律会发现:sinO册缈、如4亍、帅乐CT、sin90的值依次为0、•、吃、週、1,而cosO 2 2 2匚0詣『、匚亍、匚北『、cos90的值的顺序正好相反,阪30°、t如45°、t边60°的值依次增大,其变化规律可以总结为:当角度在0°VZAV90之间变化时,① 正弦、正切值随锐角度数的增大(或减小)而增大(或减小)② 余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在RtAABC中,ZC=90°.c(1) 互余关系:£1血且二 —厶1) = 启,* 二 —厶4)二 gm £ ;(2) 平方关系:血°占十匚。

      『貝二1;(3) 倒数关系:t如卫・t血(90°-厶4)二1或t血」tan B” smA(4) 商数关系:仙」cos j£要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中, 计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在RtAABC中,ZC=90°,ZA、ZB、ZC所对的边分别为a、b、c,则有:① 三边之间的关系:a2+b2=c2(勾股定理).② 锐角之间的关系:ZA+ZB=90° .③ 边角之间的关系:.a . h . a, ,仙丄c c b„ h „ a „ h, ,c c al 1 . 1 ? 亠要点诠释:(1) 直角三角形中有一个元素为定值(直角为90° ),是已知的值.(2) 这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3) 对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解考点五、解直角三角形的常见类型及解法j ~已知和解法 二角形类应已知条件解法步骤RtA ABC1 XII两 边两直角边(a, b)由t竝卫二?求ZA,DZB=90°-ZA,G =£斜边,一直角边(如c, a)■i a由 sinA = -求ZA,cZB=90°-ZA,h = -jc2 -a2一直角边和一锐角锐角、邻边(如ZA,b)ZB=90°—ZA,c — 直二色■ tan A cos A锐角、对边(如ZA,a)ZB=90°—ZA,a . ac = b = 沁虫, tan虫斜边、锐角(如c,ZA)ZB=90°—ZA,边角要点诠释:1. 在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些 元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算2. 若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条 件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数 量关系化归为直角三角形中的边角关系是解决实际应用问题的关键解这类问题的一般过程是:(1) 弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画 出几何图形,建立数学模型.(2) 将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形 的问题.(3 )根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角 形.(4) 得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母①表示.坡度(坡比):坡面的铅直高度h和水平距离F的比叫做坡度,用字母』表示,贝氏二+二tanu, 如图,坡度通常写成"曲:f的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫 做俯角,如图.视线视线⑶方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标 方向PA, PB,PC的方位角分别为是40°,135°, 245° .(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图② 中的目标方向线OA, OB,OC,0D的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏 西60° .特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏 西45°,西北方向指的是北偏西45° .要点诠释:1. 解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小, 最好画出它的示意图.2. 非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩3. 解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示 意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.⑴如图所示,在△ ABC 中,若ZC = 90°,ZB = 50°, AB=10,则BC的长为().A. 10 • tan50° B. 10 • cos50° C. 10 • sin50°10D. sin50°⑵如图所示,在△ ABC中,ZC=90°, sinA= 5,求cosA+tanB的值.⑶如图所示的半圆中,AD是直径,且AD = 3, AC=2,则sinB的值等于【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2) 直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数 值就知道了该角的大小,可以用比例系数k表示各边.(3) 要求sinB的值,可以将ZB转化到一个直角三角形中.【答案与解析】(1)选 B.BC .人 3(2)在厶ABC,ZC = 90°, = sin A =—.AB 5设 BC=3k,则 AB = 5k(k>0).3215由勾股定理可得AC=4k,cos A + tan B =4k 4k+ =5k 3k(3) 由已知,AD是半圆的直径,连接CD,可得ZACD = 90°AC 2ZB=ZD,所以 sinB = sinD= ==.AD 3【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根 据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己 尝试完成.举一反三:【变式】RtAABC中,ZC=90°, a、b、c分别是ZA、ZB、ZC的对边,那么c等于()(A) a cosA + bsin B /、 a b(C) +sin A sin B【答案】选B.(B) asin A + bsin B/、 a b(D) +cos A sin BAD AD过点 C 作 CD丄AB 于 D,在 Rt^ACD 中,cosA = = ,所以 AD=bcosA,同理,BD=acosB,所以AC bc=AB=AD+BD=bcosA+acosB,又ZA+ZB=90° ,所以 cosA=sinB,cosB=sinA,所以 c=asinA+bsinB.类型二、特殊角的三角函数值 仇.解答下列各题:(1)化简求值:tan 60 ° - tan 45 ° sin 45 ° sin 60° + cos30 ° cos 45°⑵在△ ABC 中,ZC=90。

      化简 Ul — 2sin A cos A .【思路点拨】第(2)题可以先利用关系式sin2 A+cos2 A=1对根号内的式子进行变形,配成完全平方的形式.【答案与解析】(1)皿®45:-啤 + sin30 sin 60° + cos30 ° cos 45 °<3 -1 4 1 3 -罷、11 + _= -1 + -品袒 2 3 2+2 21羽2-T⑵•:氮 一 2sin A cos A=sin2 A + cos2 A - 2sin A cos A=f(sin A - cos A)2 = | sin A - cos AI ,x:1 一 2sin A cos A =cos A - sin A (0 °WA < 45 °) sin A - cos A 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.