
运用简单线性规划思想理解求最值问题.doc
5页运用简单线性规划思想理解求最值问题华东师范大学2003级(数学)教育硕士江苏省溧阳市戴埠高级中学(213331) 潘晓春简单线性规划是高中数学教学的新内容之一,是解决一些性约束条件下的线性目标函数的最值(最大值或最小值)的问题它是运筹学的一个重要内容,对于形成最优化思想有着重要的作用,并且在实际生产活动中也有着广泛的应用,可以实现对资源的最佳利用简单线性规划只能解决一些二元线性约束下条件下的二元函数的最值问题,但它的思想可以延伸到其他的数学最值问题的求解过程中简单线性规划的基本思想即在一定的约束条件下,通过数形结合求函数的最值解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题本文将从规划思想出发来探讨一些高中数学中一些常见的函数最值问题一、 线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即简单线性规划的最优解。
例1 已知,,求的最大值和最小值约束条件: ,是关于的一个二元一次不等式组;目标函数:,是关于的一个二元一次函数;可行域:是指由直线,和所围成的一个三角形区域(包括边界)(如图1);可行解:所有满足(即三角形区域内(包括边界)的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得一组平行线(为参数)中的取得最大值和最小值时,所对应的点的坐标就是线性规划的最优解当线性约束条件中的二元一次不等式组中出现一个二元一次方程(或一元一次方程)时,则可行域就转变成一条线段(或一条直线,或一条射线)例2 已知满足,求的最大值和最小值约束条件:,是关于的一个二元一次不等式组;目标函数:,是关于的一个二元一次函数;可行域:是指由直线被直线和所夹的一条线段(如图1);可行解:所有满足(即线段上的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得一组平行线(为参数)中的取得最大值和最小值时,所对应的点的坐标就是线性规划的最优解这类问题的解决,关键在于能够正确理解线性约束条件所表示的几何意义,并画出其图形,利用简单线性规划求最优解方法求出最优解及目标函数的最大值或最小值二、 非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。
它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解例3 已知满足,,求的最大值和最小值Oxy2图 3约束条件:,是关于的一个二元二次方程;目标函数:,是关于的一个二元一次函数;可行域:是圆上的圆周(如图3)可行解:所有满足(即圆周上的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得一组平行线(为参数)中的取得最大值和最小值时,所对应的点的坐标就是线性规划的最优解给定区间内的函数最值问题也可以看作是这类问题例4 求函数的最大值和最小值约束条件:是关于的一个二元不等式组;目标函数:是关于的一个二元一次函数;可行域:函数的图象在直线和之间(包括端点)的部分曲线(如图4)可行解:所有满足(即曲线段上的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得一组平行线(为参数)中的取得最大值和最小值时,所对应的点的坐标就是线性规划的最优解这类问题的解决,关键在于能够正确理解非线性约束条件所表达的几何意义,并画出其图形,利用简单线性规划求最优解方法求出最优解及目标函数的最大值或最小值。
三、 线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解例5 已知实数满足不等式组,求的最小值约束条件:是一个关于的一个二元一次不等式组;目标函数:是一个关于的一个二元二次函数,可以看作是一点到点的距离的平方;可行域:是指由直线,和所围成的一个三角形区域(包括边界)(如图5);可行解:所有满足(即三角形区域(包括边界)内的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得它到点的距离最小,则其距离的平方也取得最小值,此时所对应的点的坐标就是最优解例6 实数满足不等式组,求的最小值约束条件:是一个关于的一个二元一次不等式组;目标函数:是一个关于的一个二元函数,可以看作是一点与点的斜率;可行域:是指由直线,和所围成的一个三角形区域(包括边界)(如图6);可行解:所有满足(即三角形区域(包括边界)内的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得它与点的斜率取得最小值,此时所对应的点的坐标就是最优解。
这类问题的解决,关键在于能够正确理解非线性目标函数所表示的几何意义,并利用图形及非线性目标函数所表示的几何意义求出最优解及目标函数的最大值或最小值四、 非线性约束条件下非线性函数的最值问题在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解例7 已知满足,求的最大值和最小值约束条件:是一个关于的一个二元方程;目标函数:是一个关于的一个二元函数,可以看作是一点与点的斜率;可行域:以原点为圆心,1为半径的在轴上方的半圆及与轴的交点(如图7);可行解:所有满足(即半圆(包括交点)上的点的坐标)实数都是可行解;最优解:,即可行域内一点,使得它与点的斜率取得最大值和最小值,此时所对应的点的坐标就是最优解这类问题的解决,关键在于能够正确理解非线性约束条件与非线性目标函数所表示的几何意义,利用非线性约束条件作出图形并利用非线性目标函数所表示的几何意义求出最优解及目标函数的最大值或最小值利用线性规划思想去理解高中数学中一些求最值问题,实际上是对数学形结合思想的提升,利用线性或非线性函数的几何意义,通过作图解决最值问题。
是从一个新的角度对求最值问题的理解,对于学生最优化思想的形成是非常有益的。












