
河南省郑州枫杨外国语中学2025届九上数学开学监测模拟试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省郑州枫杨外国语中学2025届九上数学开学监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若关于的分式方程有增根,则的值是( )A.或 B.C. D.2、(4分)若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )A. B. C. D.3、(4分)下列由左到右的变形,属于因式分解的是( )A. B.C. D.4、(4分)小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm,则它的宽约为( )A.12.36cm B.13.6cm C.32.386cm D.7.64cm5、(4分)若分式有意义,则的取值范围是( )A. B. C. D.6、(4分)在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有( )A.2 个 B.3个 C.4个 D.5个7、(4分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN,若AB=,BC=,则图中阴影部分的面积为( )A.4 B.2 C.2 D.28、(4分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩.根据统计图中的信息可得,下列结论正确的是( )A.甲队员成绩的平均数比乙队员的大B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大D.乙队员成绩的方差比甲队员的大二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_____.10、(4分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是_____.11、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.12、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.13、(4分)如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.三、解答题(本大题共5个小题,共48分)14、(12分)如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中,.(1)求直线的函数解析式;(2)若直线与轴交于点,求出的面积.15、(8分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.16、(8分)计算:(1) (2)(3)先化简:再求值.,其中17、(10分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级 88 94 90 94 84 94 99 94 99 100八年级 84 93 88 94 93 98 93 98 97 99整理数据:按如下分数段整理数据并补全表格:成绩x人数 年级七年级1153八年级44分析数据:补全下列表格中的统计量:统计量年级平均数中位数众数方差七年级93.69424.2八年级93.79320.4得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)18、(10分)如图,在平面直角坐标系中,一次函数图像经过点,且与轴相交于点,与正比例函数的图像相交于点,点的横坐标为.(1)求的值;(2)请直接写出不等式的解集.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.20、(4分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为 .21、(4分)为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.22、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.23、(4分)代数式有意义的条件是________.二、解答题(本大题共3个小题,共30分)24、(8分)顶点都在格点上的多边形叫做格点多边形.以下的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母). (1)在图甲中,画一个以为一边且面积为15的格点平行四边形;(2)在图乙中,画一个以为一边的格点矩形.25、(10分)如图,平面直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.(1)求的值及的解析式;(2)求的值;(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.26、(12分)分解因式和利用分解因式计算(1)(a2+1)2-4a2 (2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,由最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘x-4,得∵原方程有增根,∴最简公分母x-4=0,解得x=4,当x=4时,,解得:故选:C.本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.2、D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.3、C【解析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积的形式,故B错误; C. 把一个多项式转化成几个整式积的形式,故C正确;D没把一个多项式转化成几个整式积的形式,故D错误.故答案选:C.本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.4、A【解析】根据黄金分割的比值约为0.1列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.1=12.36cm.故选:A.本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.5、B【解析】分式有意义时,分母x-1≠0,由此求得x的取值范围.【详解】依题意得:x-1≠0,解得x≠1.故选B.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.6、A【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.7、B【解析】根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.【详解】∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=,BC=∴阴影部分的面积=××=2.故选B.本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.8、B【解析】根据平均数的公式:平均数=所有数之和再除以数的个数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;中位数就是最中间的数或最中间两个数的平均数.【详解】解:(1)甲队员10次射击的成绩分别为6,7、7,7,1,1,9,9,9,10;甲10次射击成绩的平均数=(6+3×7+2×1+3×9+10)÷10=1,方差=[(6-1)2+3×(7-1)2+2×(1-1)3+3×(9-1)2+(10-1)2]=1.4;中位数:1.(2)乙队员9次射击的成绩分别为6,7,7,1,1,1,9,9,10;乙9次射击成绩的平均数=(6+2×7+3×1+2×9+10)÷9=1,方差=[(6-1)2+2×(7-1)2+3×(1-1)3+2×(9-1)2+(10-1)2]≈1.3;中位数:1.两者平均数和中位数相等,甲的方差比乙大.故选B.本题考查平均数、方差的定义和公式;熟练掌握平均数和方差的计算是解决问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.把x=1代入方程,即可得到一个关于m的方程,从而求得m的值,还要注意一元二次方程的系数不能等于1.试题解析:把x=1代入(m-1)x2+5x+m2-3m+2=1中得:m2-3m+2=1,解得:m=1或m=2,∵m-1≠1,∴m≠1,∴m=2.考点:一元二次方程的解.10、m>1.【解析】根据反比例函数的性质得到m-1>0,然后解不等式即可.【详解】解:∵在反比例函数y=的图象每一条曲线上,y都随x的增大而减小,∴m-1>0,∴m>1.故答案为m>1.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.11、【解析】根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.【详解】解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=∠MOP+∠NOP=2∠AOB=90°,∴△MON为等腰直角三角形。












