
2021-2022学年浙江省舟山市普陀中学高一数学理期末试题含解析.docx
14页2021-2022学年浙江省舟山市普陀中学高一数学理期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知0<α<<β<π,又sinα=,cos(α+β)=-,则sinβ=( )A.0 B.0或 C. D.± 参考答案:B2. 函数( )A.是偶函数,且在上是单调减函数 B.是奇函数,且在上是单调减函数C.是偶函数,且在上是单调增函数D.是奇函数,且在上是单调增函数参考答案:D略3. 若,则是( )A. B. C. D. 参考答案:D略4. 已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为A. B. C. D.参考答案:D5. 若,则 ( )A. B. C. D. 参考答案:B【分析】根据余弦函数二倍角公式,代入可得的值详解】由余弦函数二倍角公式可知 带入可得所以选B【点睛】本题考查了余弦函数二倍角公式的化简应用,属于基础题6. (5分)已知函数y=f(x)是偶函数,y=f(x﹣2)在[0,2]上是单调减函数,则() A. f(0)<f(﹣1)<f(2) B. f(﹣1)<f(0)<f(2) C. f(﹣1)<f(2)<f(0) D. f(2)<f(﹣1)<f(0)参考答案:A考点: 奇偶性与单调性的综合. 专题: 常规题型.分析: 此题是函数的奇偶性和单调性的综合应用.在解答时可以先由y=f(x﹣2)在[0,2]上是单调减函数,转化出函数y=f(x)的一个单调区间,再结合偶函数关于y轴对称获得函数在[﹣2,2]上的单调性,结合函数图象易获得答案.解答: 由y=f(x﹣2)在[0,2]上单调递减,∴y=f(x)在[﹣2,0]上单调递减.∵y=f(x)是偶函数,∴y=f(x)在[0,2]上单调递增.又f(﹣1)=f(1)故选A.点评: 本题考查的是函数的奇偶和单调性的综合应用.在解答时充分体现了数形结合的思想、对称的思想以及问题转化的思想.值得同学们反思和体会.7. 在△ABC中,设角A,B,C的对边分别为a,b,c.已知B=45°,C=120°,b=2,则c=( )A.1 B. C.2 D.参考答案:D【考点】HP:正弦定理.【分析】由题意和正弦定理直接求出边c即可.【解答】解:由题意得,B=45°,C=120°,b=2,则由正弦定理得,所以c==,故选:D.8. 常数c≠0,则圆x2+y2+2x+2y+c=0与直线2x+2y+c=0的位置关系是( )A、相交 B、相切 C、相离 D、随C值变参考答案:C9. 一个水平放置的三角形的斜二测直观图是如图等腰直角三角形A’B’O’,若O’B’=1,那么原△ABO的面积是( )A. B. C. D.参考答案:C10. 已知a1>a2>a3>1,则使得(i=1,2,3)都成立的x的取值范围是( )A. B.C. D.参考答案:B【考点】8K:数列与不等式的综合.【分析】由ai>1,得﹣?((aix+1)(x+ai)>0,?x>﹣,或x<﹣a3由a1>a2>a3>1,∴,?x或x<﹣a3【解答】解:∵ai>1,∴﹣,?((aix+1)(x+ai)>0,?x>﹣,或x<﹣a3又因为a1>a2>a3>1,∴,?x或x<﹣a3故选:B二、 填空题:本大题共7小题,每小题4分,共28分11. 函数的图象过定点P,则点P的坐标为______ . 参考答案:(2,4)当x=2时,f(2)=a2﹣2+3=a0+3=4,∴函数f(x)=ax﹣2+3的图象一定经过定点(2,4).故答案为(2,4). 12. 已知sinα=,α∈(,π),则sin2α的值为 .参考答案:【考点】GS:二倍角的正弦.【分析】由已知利用同角三角函数基本关系式可求cosα,进而利用二倍角的正弦函数公式即可计算得解.【解答】解:∵sinα=,α∈(,π),∴cosα=﹣=﹣,∴sin2α=2sinαcosα=2×(﹣)=.故答案为:.13. 某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据,则其线性回归直线方程是 x24568y3040605070参考答案:y=6.5x+17.5【考点】线性回归方程. 【分析】先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程. 【解答】解: =5, =50, =145, xiyi=1380 ∴b=(1380﹣5×5×50)÷(145﹣5×52)=6.5 a=50﹣6.5×5=17.5 故回归方程为y=6.5x+17.5. 故答案为:y=6.5x+17.5. 【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节. 14. 已知数列{an}满足,,则数列的前n项和 ▲ .参考答案:; 15. △ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:(1)(a+b+c)(a+b﹣c)=3ab(2)sinA=2cosBsinC(3)b=acosC,c=acosB(4)2R(sin2A-sin2C)=(a-b)sinB有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题 .参考答案:(1)(2)→甲 或 (2)(4)→乙 或 (3)(4)→乙【分析】若(1)(2)→甲,由(1)利用平方差及完全平方公式变形得到关于a,b及c的关系式,利用余弦定理表示出cosC,把得到的关系式代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值求出C为60°,再利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B﹣C)=0,由B和C为三角形的内角,得到B﹣C的范围,利用特殊角的三角函数值得到B=C,从而得到三角形为等边三角形;若(2)(4)→乙,利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B﹣C)=0,由B和C为三角形的内角,得到B﹣C的范围,利用特殊角的三角函数值得到B=C,再利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,从而得到三角形为等腰直角三角形;若(3)(4)→乙,利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,再利用正弦定理化简(3)中的两等式,分别表示出sinA,两者相等再利用二倍角的正弦函数公式,得到sin2B=sin2C,由B和C都为三角形的内角,可得B=C,从而得到三角形为等腰直角三角形.三者选择一个即可.【解答】解:由(1)(2)为条件,甲为结论,得到的命题为真命题,理由如下:证明:由(a+b+c)(a+b﹣c)=3ab,变形得:a2+b2+2ab﹣c2=3ab,即a2+b2﹣c2=ab,则cosC==,又C为三角形的内角,∴C=60°,又sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,即sinBcosC﹣cosBsinC=sin(B﹣C)=0,∵﹣π<B﹣C<π,∴B﹣C=0,即B=C,则A=B=C=60°,∴△ABC是等边三角形;以(2)(4)作为条件,乙为结论,得到的命题为真命题,理由为:证明:化简得:sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,即sinBcosC﹣cosBsinC=sin(B﹣C)=0,∵﹣π<B﹣C<π,∴B﹣C=0,即B=C,∴b=c,由正弦定理===2R得:sinA=,sinB=,sinC=,代入得:2R?(﹣)=(a﹣b)?,整理得:a2﹣b2=ab﹣b2,即a2=ab,∴a=b,∴a2=2b2,又b2+c2=2b2,∴a2=b2+c2,∴∠A=90°,则三角形为等腰直角三角形;以(3)(4)作为条件,乙为结论,得到的命题为真命题,理由为:证明:由正弦定理===2R得:sinA=,sinB=,sinC=,代入得:2R?(﹣)=(a﹣b)?,整理得:a2﹣b2=ab﹣b2,即a2=ab,∴a=b,∴a2=2b2,又b2+c2=2b2,∴a2=b2+c2,∴∠A=90°,又b=acosC,c=acosB,根据正弦定理得:sinB=sinAcosC,sinC=sinAcosB,∴=,即sinBcosB=sinCcosC,∴sin2B=sin2C,又B和C都为三角形的内角,∴2B=2C,即B=C,则三角形为等腰直角三角形.故答案为:(1)(2)→甲 或 (2)(4)→乙 或 (3)(4)→乙【点评】此题考查了三角形形状的判断,涉及的知识有正弦、余弦定理,两角和与差的正弦函数公式,勾股定理,等边三角形的判定,等腰三角形的判定与性质,属于条件开放型题,是一类背景新、解题活、综合性强、无现成模式的题型.解答此类题需要运用观察、类比、猜测、归纳、推理等多种探索活动寻求解题策略. 16. (2014?商丘二模)在△ABC中,D为边BC上的中点,AB=2,AC=1,∠BAD=30°,则AD= _________ .参考答案:17. 已知关于x的不等式的解集是,则不等式的解集为_________参考答案:【分析】根据不等式解集与对应方程根的关系求关系,再代入化简求不等式解集.【详解】因为的解集是,所以为的两根,且,即因此,即不等式的解集为.【点睛】本题考查不等式解集与对应方程根的关系以及解一元二次不等式,考查基本分析求解能力,属中档题.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 已知函数f(x)的定义域为(0,+∞),的定义域为集合B;集合A={x|a﹣1<x<2a+1},若A∩B=?,求实数a的取值集合.参考答案:【考点】集合的包含关系判断及应用. 【专题】计算题.【分析】利用复合函数定义域列出关于x的不等式求出集合B是解决该问题的关键.集合A中两个端点含有字母,对字母的讨论又是解决该题的另一个关键,对集合A分是否为空集进行讨论.【解答】解:由得出B={x|0<x<1},∵A∩B=?①当A=?时,有2a+1≤a﹣1?a≤﹣2②当A≠?时,有2a+1>a﹣1?a>﹣2[来源:学科网]又∵A∩B=?,则有2a+1≤0或a﹣1≥1∴由①②可知a的取值集合为.【点评】本题考查复合函数求定义域的思想,考查分类讨论思想,考查求取值范围的列不等式求解的思想,注意数轴分析法在求解中的运用.19. 已知、是方程的两个根,求证:.参考答案:【分析】首先利用韦达。












