
山西省朔州怀仁县联考2025届九上数学开学综合测试模拟试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………山西省朔州怀仁县联考2025届九上数学开学综合测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在解分式方程+=2时,去分母后变形正确的是( )A. B.C. D.2、(4分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.6 B.8 C.10 D.123、(4分)下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解4、(4分)如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做( )A.代入法 B.换元法 C.数形结合 D.分类讨论5、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )A.452名学生 B.抽取的50名学生C.452名学生的课外阅读情况 D.抽取的50名学生的课外阅读情况6、(4分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是( )A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min7、(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( )队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.61.34A.甲 B.乙 C.丙 D.丁8、(4分)下列方程有两个相等的实数根的是( )A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.10、(4分)抛物线,当随的增大而减小时的取值范围为______.11、(4分)如图,已知∠EAD=30°,△ADE绕点A旋转50°后能与△ABC重合,则∠BAE=_________°.12、(4分)一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.13、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?15、(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3) 两点在运动过程中,求使与相似的时间的值.16、(8分)如图,矩形花坛面积是24平方米,两条邻边,的和是10米(),求边的长.17、(10分)如图1,在平面直角坐标系中,直线与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC,点C为直角顶点,连接OC.(1)直接写出= ;(2)请你过点C作CE⊥y轴于E点,试探究OB+OA与CE的数量关系,并证明你的结论;(3)若点M为AB的中点,点N为OC的中点,求MN的值;(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线于点P,求点P的坐标.18、(10分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是 ;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为,则第二小组的频数为______.20、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______. 21、(4分)如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是 .22、(4分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.23、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:(1);(2);(3);(4).25、(10分)如图,在正方形网格中,每个小正方形的边长为 1,DABC 为格点三角形(即 A, B, C 均 为格点),求 BC 上的高.26、(12分)解方程:(1)(2)2x2﹣4x+1=0参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A.本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.2、C【解析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,先求证△AFD′≌△CFB,得BF=D′F,设D′F=BF=x,则在Rt△AFD′中,根据勾股定理列方程求出x即可得到结果.【详解】解:由四边形ABCD为矩形以及折叠可得,AD′=AD=BC,∠D=∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=BF=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解得:x=3,∴AF=8-x=8﹣3=5,∴S△AFC=•AF•BC=1.故选:C.本题考查了折叠的性质,矩形的性质,勾股定理以及全等三角形的判定与性质等知识,本题中设D′F=x,在直角三角形AFD′中运用勾股定理求x是解题的关键.3、C【解析】对于A、B选项,可分别写出满足题意的不等式的解,从而判断A、B的正误;对于C、D,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断C、D的正误.【详解】A. 由x<5,可知该不等式的整数解有4,3,2,1,-1,-2,-3,-4等,有无数个,所以A选项正确,不符合题意;B. 不等式x>−5的负整数解集有−4,−3,−2,−1.故正确,不符合题意;C. 不等式−2x<8的解集是x>−4,故错误.D. 不等式2x<−8的解集是x<−4包括−40,故正确,不符合题意;故选:C.本题是一道关于不等式的题目,需结合不等式的解集的知识求解;4、C【解析】本题利用实数与数轴上的点对应关系结合数学思想即可求解答.【详解】解:如图在数轴上表示点P,这是利用直观的图形--数轴表示抽象的无理数,∴说明问题的方式体现的数学思想方法叫做数形结合,∴A,B,D的说法显然不正确.故选:C.本题考查的是数学思想方法,做这类题可用逐个排除法,显然A,B,D所说方法不对.5、D【解析】根据样本是总体中所抽取的一部分个体,可得答案.【详解】解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.故选:D.本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、B【解析】分析:根据函数图象判断即可.详解:小明吃早餐用了(25-8)=17min,A错误;小明读报用了(58-28)=30min,B正确;食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选B.点睛:本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.7、C【解析】首先比较平均数,然后比较方差,方差越小,越稳定.【详解】∵==9.7,S2甲>S2丙,∴选择丙.故选:C.此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8、B【解析】分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.【详解】A、△=b2 -4ac=1+24=25>0,方程有两个不相等的实数根,不符合题意;B、△=b2 -4ac=36-36=0,方程有两个相等的实数根,符合题意;C、△=b2 -4ac=25-40=-15<0,方程没有实数根,不符合题意;D、△=b2 -4ac=81>0,方程有两个不相等的实数根,不符合题意,故选B.本题考查了一元二次方程根的情况与与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.【详解】设 ∵矩形纸片中,,现将其沿对折,使得点C与点A重合,点D落在处,∴ ,在中,,即 解得 ,故答案为:.本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中。












