
1.2.1任意角的三角函数优秀分享资料.ppt
45页11.在初中我们是如何定义锐角三角函数的?在初中我们是如何定义锐角三角函数的?复习回顾复习回顾OabMPc2OabMPyx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?新课新课 导入导入3yx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?﹒﹒o4如果改变点P在终边上的位置,这三个比值会改变吗?如果改变点P在终边上的位置,这三个比值会改变吗?﹒﹒∽ ∽诱思诱思 探究探究MOyxP(a,b)51.锐角三角函数(在单位圆中)锐角三角函数(在单位圆中)以原点以原点O为为圆心,以单位圆心,以单位长度为半径的圆,称为长度为半径的圆,称为单位圆单位圆. yOx1M62.任意角的三角函数定义任意角的三角函数定义 设设 是一个任意角,它的终边与单位圆交于点是一个任意角,它的终边与单位圆交于点 那么那么:((1)) 叫做叫做 的正弦,记作的正弦,记作 ,即,即 ;; ((2)) 叫做叫做 的余弦,记作的余弦,记作 ,即,即 ;; (3) 叫做 的正切正切,记作 ,即 。
所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角为自变量角为自变量,以,以单位圆单位圆上点上点的的坐标或坐标的比值坐标或坐标的比值为函数值的为函数值的函数,我们将他们称为函数,我们将他们称为三角函数三角函数.﹒使比值有意义的角的集合使比值有意义的角的集合即为三角函数的定义域即为三角函数的定义域.7xyo的终边的终边说说 明明((1)正弦就是交点的纵坐标,余弦就是交点)正弦就是交点的纵坐标,余弦就是交点横坐标的比值横坐标的比值. .的横坐标,的横坐标, 正切就是正切就是 交点的纵坐标与交点的纵坐标与. .((2)) 正弦、余弦总有意义正弦、余弦总有意义.当当 的终边在的终边在 横坐标等于横坐标等于0,, 无意义,此时无意义,此时 轴上时,点轴上时,点P 的的((3)由于角的集合与实数集之间可以建立)由于角的集合与实数集之间可以建立一一对应关系一一对应关系,,三角函数可以看成是自变量为实数的函数三角函数可以看成是自变量为实数的函数.8例例1.求求 的正弦、余弦和正切值的正弦、余弦和正切值.解:解:在直角坐标系中,作在直角坐标系中,作 ,易知,易知 的终边与单位圆的交点坐标为的终边与单位圆的交点坐标为 所以所以 思考:思考:若把角若把角 改为改为 呢呢? 实例实例 剖析剖析﹒﹒P15.110根据上述方法否能求得特殊角三角函数值根据上述方法否能求得特殊角三角函数值?11例例2.已知角已知角 的终边经过点的终边经过点 ,求角,求角 的正弦、余弦和正切值的正弦、余弦和正切值 .解解:由已知可得由已知可得设角设角 的终边与单位圆交于的终边与单位圆交于 ,,分别过点分别过点 、、 作作 轴的垂线轴的垂线 、、于是,于是, ∽12 设角设角 是一个任意角,是一个任意角, 是终边上的任意一点,是终边上的任意一点,点点 与原点的距离与原点的距离 .那么那么① ① 叫做叫做 的正弦,即的正弦,即 ②② 叫做叫做 的余弦,即的余弦,即③③ 叫做叫做 的正弦,即的正弦,即 任意角任意角 的三角函数值仅与的三角函数值仅与 有关,而与点有关,而与点 在角的终在角的终边上的位置无关边上的位置无关.定义推广:定义推广:13于是于是,巩固巩固 提高提高练习练习: 1.已知角已知角 的终边过点的终边过点 ,, 求求 的三个三角函数值的三个三角函数值.解:解:由已知可得:由已知可得:P15.21415161.根据三角函数的定义,确定它们的定义域根据三角函数的定义,确定它们的定义域(弧度制)(弧度制)探探究究R2.确定三角函数值在各象限的符号确定三角函数值在各象限的符号yxoyxoyxo+(( ))(( ))(( ))(( ))(( ))(( ))(( ))(( ))(( ))(( ))(( ))R+--+--++-+-17yxo+-+++++-----yxoyxo全为+yxo记法:记法:一全正一全正一全正一全正二正弦二正弦二正弦二正弦三正切三正切三正切三正切四余弦四余弦四余弦四余弦三个三角函数在各象限的符号三个三角函数在各象限的符号心得心得: :角定象限角定象限, ,象限定符号象限定符号. .18例例3. 求证:当下列不等式组成立时,角求证:当下列不等式组成立时,角 为第三象限角为第三象限角.反之也对.反之也对.① ②证明:证明: 因为因为①①式式 成立成立,所以所以 角的终边可能位于第三角的终边可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 轴的非正半轴上;轴的非正半轴上; 又因为又因为②②式式 成立,所以角成立,所以角 的终边可能位于的终边可能位于第一或第三象限第一或第三象限. 因为因为①②①②式都成立,所以角式都成立,所以角 的终边只能位于第三象限的终边只能位于第三象限.于是角于是角 为第三象限角为第三象限角.反过来请同学们自己证明反过来请同学们自己证明.19如果两个角的终边相同,那么这两个如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?角的同一三角函数值有何关系? 终边相同的角的同一三角函数值相等(终边相同的角的同一三角函数值相等(公式一公式一))其中其中 利用公式一,可以把求任意角的三角函数值,转化为利用公式一,可以把求任意角的三角函数值,转化为求求 角的三角函数值角的三角函数值 . ?20 例题例题((1)因为)因为 是第三象限角,所以是第三象限角,所以 ;;((3)因为)因为 = 而而 是第一象限角,所以是第一象限角,所以解:解: ((2)因为)因为 是第四象限角,所以是第四象限角,所以21解:解:226.已知已知 在第二象限在第二象限, 试确定试确定 sin(cos ) cos(sin ) 的符号的符号. 解解: ∵∵ 在第二象限在第二象限, ∴-∴-1
因算能力,以及转化与化归的思想因 故选故选B423. (2007江西江西)若若 ,, 则则 等于(等于( )) A. -3A. -3B.B.C. 3C. 3D.D.D D43 小小 结结1.2.三角函数线的定义,会画.三角函数线的定义,会画 任意角的三角函数线;任意角的三角函数线;3. 利用单位圆比较三角函数值利用单位圆比较三角函数值 的大小,求角的范围的大小,求角的范围.44Thank you!45。
