
2025届海南省华东师范大第二附属中学八年级数学第一学期期末达标检测试题含解析.doc
17页2025届海南省华东师范大第二附属中学八年级数学第一学期期末达标检测试题末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内2.答题时请按要求用笔3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每小题3分,共30分)1.下列二次根式中的最简二次根式是( )A. B. C. D.2.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( )A.3 B.4 C.5 D.63.如图,设(),则的值为( )A. B. C. D.4.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是( )A.30° B.30°或150° C.60°或150° D.60°或120°5.下列计算正确的是( )A.x2•x4=x8 B.x6÷x3=x2C.2a2+3a3=5a5 D.(2x3)2=4x66.三角形的三边长可以是( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,137.要使分式有意义,x的取值应满足( )A.x≠1 B.x≠﹣2 C.x≠1或x≠﹣2 D.x≠1且x≠﹣28.下列各式从左到右的变形中,属于因式分解的是( )A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+169.如图,已知,延长至,使;延长至,使;延长至,使;连接、、,得.若的面积为,则的面积为( )A. B. C. D.10.在实数,3.1415926,,1.010010001…,,中,无理数有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,在一个规格为(即个小正方形)的球台上,有两个小球. 若击打小球,经过球台边的反弹后,恰好击中小球,那么小球击出时,应瞄准球台边上的点______________. 12.因式分解:3x—12xy2 =__________.13.把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.14.若一次函数()与一次函数的图象关于轴对称,且交点在轴上.则这个函数的表达式为_______15.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.16.一组数据5,,2,,,2,若每个数据都是这组数据的众数,则这组数据的极差是________.17.在平面直角坐标系中,已知一次函数y=x−1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”)18.若分式的值为0,则x=_____________.三、解答题(共66分)19.(10分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.20.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?21.(6分)已知:如图,点B、D、C在一条直线上,AB=AD,BC=DE,AC=AE,(1)求证:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.22.(8分)已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明) 23.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别是.(1)在图中画出关于轴对称的图形,并写出点C的对应点的坐标;(2)在图中轴上作出一点,使得的值最小(保留作图痕迹,不写作法)24.(8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?25.(10分)某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格 A型 B型 进价(元/件) 60 100 标价(元/件) 100 160(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?26.(10分)如图,正方形的顶点是坐标原点,边和分别在轴、轴上,点的坐标为.直线经过点,与边交于点,过点作直线的垂线,垂足为,交轴于点.(1)如图1,当时,求直线对应的函数表达式;(2)如图2,连接,求证:平分.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据最简二次根式的概念判断即可.【详解】A、是最简二次根式; B、,不是最简二次根式;C、,不是最简二次根式;D、,不是最简二次根式;故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2、C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.3、A【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【详解】解:甲图中阴影部分面积为a2-b2,乙图中阴影部分面积为a(a-b),则k===,故选A.【点睛】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.4、B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.5、D【分析】根据同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【详解】解:A.应为x2•x4=x6,故本选项错误;B.应为x6÷x3=x3,故本选项错误;C.2a2与3a3不是同类项,不能合并,故本选项错误;D.(2x3)2=4x6,正确.故选:D.【点睛】本题考查合并同类项,同底数幂的乘法和除法、积的乘方,熟练掌握运算法则是解题的关键.注意掌握合并同类项时,不是同类项的一定不能合并.6、D【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.2,11,13中,2+11=13,不合题意;B.5,12,7中,5+7=12,不合题意;C.5,5,11中,5+5<11,不合题意;D.5,12,13中,5+12>13,能组成三角形;故选D.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.7、D【分析】根据分式的分母不为0来列出不等式,解不等式即可得到答案.【详解】解:由题意得,(x+2)(x﹣1)≠0,解得,x≠1且x≠﹣2,故选:D.【点睛】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.8、C【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、把一个多项式转化成几个整式积的形式,故C符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选C.【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.9、C【分析】如图所示:连接AE、CD,要求△DEF的面积,可以分三部分来计算,利用高一定时,三角形的面积与高对应的底成正比的关系进行计算;利用已知△ABC的面积k计算与它同高的三角形的面积,然后把所求各个面积相加即可得出答案.【详解】如图所示:连接AE、CD∵BD=AB∴S△ABC=S△BCD=k则S△ACD=2 k∵AF=3AC∴FC=4AC∴S△FCD=4S△ACD=4×2k=8k同理求得:S△ACE=2S△ABC=2kS△FCE=4S△ACE=4×2k=8kS△DCE=2S△BCD=2×k=2k∴S△DEF=S△FCD+S△FCE+S△DCE=8k+8k+2k=18 k故选:C【点睛】本题主要考查三角形的面积与底的正比关系的知识点:当高相同时,三角形的面积与高对应的底成正比的关系,掌握这一知识点是解题的关键.10、C【分析】根据无理数的定义,即可得到答案.【详解】解:在实数,3.1415926,,1.010010001…,,中,无理数有:,1.010010001…,,共3个;故选:C.【点睛】本题考查了无理数的定义,解答本题的关键是掌握无理数的三种形式.二、填空题(每小题3分,共24分)11、P1【分析】认真读题,作出点A关于P1P1所在直线的对称点A′,连接A′B与P1P1的交点即为应瞄准的点.【详解】如图,应瞄准球台边上的点P1.故答案为:P1.【点睛】本题考查了生活中的轴对称现象问题;解决本题的关键是理解击球问题属于求最短路线问题.12、【分析】提取公因式3x后,剩下的式子符合平方差公式的特点,可以继续分解.【详解】解:==,故答案为:.【点睛】本题考查因式分解,解题的关。












