好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024年中考数学二轮题型突破练习题型9 二次函数综合题 类型2 二次函数与线段有关的问题27题(专题训练)(教师版).doc

84页
  • 卖家[上传人]:gu****iu
  • 文档编号:482050396
  • 上传时间:2024-05-08
  • 文档格式:DOC
  • 文档大小:4.23MB
  • / 84 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 类型二 二次函数与线段有关的问题(专题训练)1.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.  (1)求该抛物线的表达式;(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.【答案】(1);(2)取得最大值为,;(3)点的坐标为或或【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线的解析式为,过点作轴于点,交于点,设,则,则,进而根据二次函数的性质即可求解;(3)根据平移的性质得出,对称轴为直线,点向右平移5个单位得到,,勾股定理分别表示出,进而分类讨论即可求解.【详解】(1)解:将点,.代入得,解得:,∴抛物线解析式为:,(2)∵与轴交于点,,当时,解得:,∴,∵.设直线的解析式为,∴解得:∴直线的解析式为,如图所示,过点作轴于点,交于点,  设,则,∴,∵,,∴,∵,∴,∴,∴,∴当时,取得最大值为,,∴;(3)∵抛物线将该抛物线向右平移个单位,得到,对称轴为直线,点向右平移5个单位得到∵平移后的抛物线与轴交于点,令,则,∴,∴∵为平移后的抛物线的对称轴上任意一点.则点的横坐标为,设,∴,,当时,,解得:或,当时,,解得:综上所述,点的坐标为或或.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.2.(2023·四川凉山·统考中考真题)如图,已知抛物线与轴交于和两点,与轴交于点.直线过抛物线的顶点.(1)求抛物线的函数解析式;(2)若直线与抛物线交于点,与直线交于点.①当取得最大值时,求的值和的最大值;②当是等腰三角形时,求点的坐标.【答案】(1);(2)①当时,有最大值,最大值为;②或或【分析】(1)利用待定系数法求解即可;(2)①先求出,进而求出直线的解析式为,则,进一步求出,由此即可利用二次函数的性质求出答案;②设直线与x轴交于H,先证明是等腰直角三角形,得到;再分如图3-1所示,当时, 如图3-2所示,当时, 如图3-3所示,当时,三种情况利用等腰三角形的定义进行求解即可.【详解】(1)解:∵抛物线与轴交于和两点,∴抛物线对称轴为直线,在中,当时,,∴抛物线顶点P的坐标为,设抛物线解析式为,∴,∴,∴抛物线解析式为(2)解:①∵抛物线解析式为,点C是抛物线与y轴的交点,∴,设直线的解析式为,∴,∴,∴直线的解析式为,∵直线与抛物线交于点,与直线交于点∴,∴ ,∵,∴当时,有最大值,最大值为;②设直线与x轴交于H,∴,,∴,∴是等腰直角三角形,∴;如图3-1所示,当时, 过点C作于G,则∴点G为的中点,由(2)得,∴,∴,解得或(舍去),∴;如图3-2所示,当时,则是等腰直角三角形,∴,即,∴点E的纵坐标为5,∴,解得或(舍去),∴ 如图3-3所示,当时,过点C作于G,同理可证是等腰直角三角形,∴,∴,∴,∴,解得或(舍去),∴,,∴,∴综上所述,点E的坐标为或或【点睛】本题主要考查了二次函数综合,勾股定理,等腰直角三角形的性质与判断,一次函数与几何综合,待定系数法求函数解析式等等,利用分类讨论的思想求解是解题的关键.3.小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长.【答案】(1);(2)【分析】(1)确定B点坐标后,设出抛物线解析式,利用待定系数法求解即可;(2)利用杯深 CD′ 与杯高 OD′ 之比为0.6,求出OD′ ,接着利用抛物线解析式求出B'或A'横坐标即可完成求解.【详解】解:(1)设,∵杯口直径 AB=4 ,杯高 DO=8 ,∴将,代入,得,.(2),,,,当时,,或,,即杯口直径的长为.【点睛】本题考查了抛物线的应用,涉及到待定系数法求抛物线解析式、求抛物线上的点的坐标等内容,解决本题的关键是读懂题意,找出相等关系列出等式等.4.(2023·浙江金华·统考中考真题)如图,直线与轴,轴分别交于点,抛物线的顶点在直线上,与轴的交点为,其中点的坐标为.直线与直线相交于点.  (1)如图2,若抛物线经过原点.①求该抛物线的函数表达式;②求的值.(2)连接与能否相等?若能,求符合条件的点的横坐标;若不能,试说明理由.【答案】(1)①;②;(2)能,或或或.【分析】(1)①先求顶点的坐标,然后待定系数法求解析式即可求解;②过点作于点.设直线为,把代入,得,解得,直线为.同理,直线为.联立两直线解析式得出,根据,由平行线分线段成比例即可求解;(2)设点的坐标为,则点的坐标为.①如图2-1,当时,存在.记,则.过点作轴于点,则.在中,,进而得出点的横坐标为6.②如图2-2,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.③如图,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.④如图2-4,当时,存在.记.过点作轴于点,则.在中,,得出点的横坐标为.【详解】(1)解:①∵,∴顶点的横坐标为1.∴当时,,∴点的坐标是.设抛物线的函数表达式为,把代入,得,解得.∴该抛物线的函数表达式为,即.②如图1,过点作于点.  设直线为,把代入,得,解得,∴直线为.同理,直线为.由解得∴.∴.∵,∴.(2)设点的坐标为,则点的坐标为.①如图,当时,存在.记,则.∵为的外角,∴.∵.∴.∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为6.  ②如图2-2,当时,存在.记.∵为的外角,∴.∴∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.    ③如图2-3,当时,存在.记.   ∵,∴.∴.∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.④如图2-4,当时,存在.记.∵,∴.    ∴.∴.过点作轴于点,则.在中,,∴,解得.∴点的横坐标为.综上,点的横坐标为.【点睛】本题考查了二次函数综合运用,解直角三角形,平行线分线段成比例,熟练掌握以上知识,分类讨论是解题的关键.5.如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段,,,MN长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED上.设点的横坐标为,求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).【答案】(1)y=x2+8(2)(ⅰ)l=m2+2m+24,l的最大值为26;(ⅱ)方案一:+9≤P1横坐标≤;方案二:+≤P1横坐标≤【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,-m2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.(1)由题意可得:A(-6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(-6,2)代入,(-6)2a+8=2,解得:a=,∴抛物线对应的函数表达式为y=x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,∴P2的坐标为(m,m2+8),∴P1P2=P3P4=MN=m2+8,P2P3=2m,∴l=3(m2+8)+2m=m2+2m+24=(m-2)2+26,∵<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18-3n,∴矩形P1P2P3P4面积为(18-3n)n=-3n2+18n=-3(n-3)2+27,∵-3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令x2+8=3,解得:x=,∴此时P1的横坐标的取值范围为+9≤P1横坐标≤,方案二:设P2P1=n,则P2P3=9-n,∴矩形P1P2P3P4面积为(9-n)n=-n2+9n=-(n-)2+,∵-1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令x2+8=,解得:x=,∴此时P1的横坐标的取值范围为+≤P1横坐标≤.【点睛】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.6.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系  (1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②;(2),;(3)①4;②【分析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根。

      点击阅读更多内容
      相关文档
      备战高考语文 作文高分素材运用 人驾驶车“萝卜快跑”引热议.docx 备战高考语文 作文高分素材运用 0后双子星黄雨婷、盛李豪射下奥运首金.docx 人际意义与读后续写的意义构建-23年新高考英语读后续写提分技能.docx 高考数学真题分类汇编 排列组合与二项式定理5种常见考法归类(解析版)2021-2025年.docx 高考数学真题分类汇编 解三角形7种常见考法归类(解析版)2021-2025年.docx 备考高考历史提能训练 附解析[34].doc 备考高考历史提能训练 附解析[22].doc 备考高考历史提能训练 附解析[12].doc 备考高考历史提能训练 附解析[1].doc 【小纸条】多样组合情景默写小纸条(高考60篇)混编检测1.docx 语文选择性必修上册文言知识梳理.docx 高中语文反反复就考这些.docx 续写的整体叙事与构思-新高考英语读后续写提分技能.docx 高考语文反反复复用的25页答题模板.docx 2025年高考真题——语文(上海卷) 含答案.docx 2025年高考真题——化学(重庆卷)含解析.docx 用明喻修辞格增添描述力度-新高考英语读后续写提分技能.docx 读后续写语篇整合“三环四步”-新高考英语读后续写提分技能.docx 语病全解:三万字涵盖六大语病+4种方法速判+17标志巧析+五年高考精练.docx 高考数学真题分类汇编 空间向量与立体几何(解答题)6种常见考法归类(原卷版)2021-2025年.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.