
高考数学真题分类汇编 排列组合与二项式定理5种常见考法归类(解析版)2021-2025年.docx
16页高考数学真题 排列组合与二项式定理5种常见考法归类知识五年考情(2021-2025)命题趋势知识1 排列与组合(5年5考)考点01有限制条件的排列问题2025·上海2024·全国甲卷 2024·新课标Ⅱ卷2024·上海2023·全国甲卷2022·新高考全国Ⅱ卷2021·全国甲卷1.有限制条件的排列是高频热点近 5 年多次考查 “有限制条件的排列问题”,题目常通过 “相邻 / 不相邻”“特殊元素优先”“位置限制” 等经典模型设置,侧重逻辑推理和分类讨论思想的应用2,.组合问题则多与实际场景结合(如分配问题、选组问题),强调对 “无序性” 本质的理解3.二项式定理特定项与系数计算是绝对重点,近 5 年 “求二项式展开式的特定项”(如常数项、指定次数项)考查频率最高,核心是利用通项公式求解,需注意符号、系数与二项式系数的区别4.“系数和” 问题(如赋值法求各项系数和、奇数项 / 偶数项系数和)也频繁出现,侧重对赋值法的灵活应用5.系数最值问题偶有出现,注重逻辑分析,虽然考查次数较少,但系数最值问题常涉及不等式求解或单调性分析,需结合二项式系数的增减性规律(中间项最大),体现对知识深度的要求考点02组合问题2024·天津2023·新课标Ⅰ卷2023·新课标Ⅱ卷 2023·全国甲卷2023·全国乙卷2022·新高考全国Ⅰ卷 2022·上海2022·全国甲卷2022·全国乙卷2021·全国乙卷 2021·上海知识2 二项式定理(5年5考)考点03求二项式展开式的特定项2025·上海2025·天津2024·天津2024·北京 2023·天津2023·上海 2022·新高考全国Ⅰ卷2022·天津 2022·上海2021·北京 2021·天津考点04二项式展开式项的系数和2025·北京2024·上海2022·北京 2022·浙江 2021·浙江考点05项的系数最值问题2024·全国甲卷 2021·上海考点01有限制条件的排列问题1.(2024·全国甲卷·高考真题)某独唱比赛的决赛阶段共有甲、乙、丙、丁四人参加,每人出场一次,出场次序由随机抽签确定,则丙不是第一个出场,且甲或乙最后出场的概率是( )A. B. C. D.【答案】C【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,出场次序共有24种,其中符合题意的出场次序共有8种,故所求概率;解法二:当甲最后出场,乙第一个出场,丙有种排法,丁就种,共种;当甲最后出场,乙排第二位或第三位出场,丙有种排法,丁就种,共种;于是甲最后出场共种方法,同理乙最后出场共种方法,于是共种出场顺序符合题意;基本事件总数显然是,根据古典概型的计算公式,所求概率为.故选:C2.(2025·上海·高考真题)4个家长和2个儿童去爬山,6个人需要排成一条队列,要求队列的头和尾均是家长,则不同的排列个数有 种.【答案】288【分析】先选家长作队尾和队首,再排中间四人即可.【详解】先选两位家长排在首尾有种排法;再排对中的四人有种排法,故有种排法.故答案为:2883.(2022·新高考全国Ⅱ卷·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )A.12种 B.24种 C.36种 D.48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B4.(2021·全国甲卷·高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A.0.3 B.0.5 C.0.6 D.0.8【答案】C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:,共10种排法,其中2个0不相邻的排列方法为:,共6种方法,故2个0不相邻的概率为,故选:C.5.(2021·全国甲卷·高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A. B. C. D.【答案】C【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.6.(2024·上海·高考真题)设集合中的元素皆为无重复数字的三位正整数,且元素中任意两个不同元素之积皆为偶数,求集合中元素个数的最大值 .【答案】329【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.7.(2023·全国甲卷·高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )A.120 B.60 C.30 D.20【答案】B【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解.【详解】不妨记五名志愿者为,假设连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有种方法,同理:连续参加了两天公益活动,也各有种方法,所以恰有1人连续参加了两天公益活动的选择种数有种.故选:B.8.(2024·全国甲卷·高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与之差的绝对值不大于的概率为 .【答案】【分析】根据排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有种,设前两个球的号码为,第三个球的号码为,则,故,故,故, 若,则,则为:,故有2种,若,则,则为:,,故有10种,当,则,则为:,,故有16种,当,则,同理有16种,当,则,同理有10种,当,则,同理有2种,共与的差的绝对值不超过时不同的抽取方法总数为,故所求概率为.故答案为:9.(2024·新课标Ⅱ卷·高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .【答案】 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有种选法;每种选法可标记为,分别表示第一、二、三、四列的数字,则所有的可能结果为:,,,,所以选中的方格中,的4个数之和最大,为.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.考点02组合问题10.(2023·新课标Ⅱ卷·高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A.种 B.种C.种 D.种【答案】D【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.11.(2022·新高考全国Ⅰ卷·高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A. B. C. D.【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,若两数不互质,不同的取法有:,共7种,故所求概率.故选:D.12.(2023·全国甲卷·高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A. B. C. D.【答案】D【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.13.(2021·全国乙卷·高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种 B.120种 C.240种 D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.14.(2023·全国乙卷·高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种 B.60种 C.120种 D.240种【答案】C【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,根据分步乘法公式则共有种,故选:C.15.(2024·天津·高考真题)某校组织学生参加农业实践活动,期间安排了劳动技能比赛,比赛共5个项目,分别为整地做畦、旱田播种、作物移栽、田间灌溉、藤架搭建,规定每人参加其中3个项目.假设每人参加每个项目的可能性相同,则甲同学参加“整地做畦”项目的概率为 ;已知乙同学参加的3个项目中有“整地做畦”,则他还参加“田间灌溉”项目的概率为 .【答案】 【分析】结合列举。












