
2024年中考数学二轮复习压轴题培优练习专题32四边形与新定义综合问题(原卷版).doc
14页专题32四边形与新定义综合问题 【例1】(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D= 度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2= .【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【例2】.(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D= 度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A=∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的 ;(2)钝角三角形的“矩形框”有 个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为 cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF (填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子: ;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是 (填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.6.(2022春•南浔区期末)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7.(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p1(1,0),,.(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.8.(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是 .A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论: ; .问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.9.(2022春•铜山区期末)新定义;若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是 (写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.10.(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD=4,BC=6.求EF的长.11.(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为 °;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.12.(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有 、 .(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.13.(2022春•玄武区校级期中)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB、EF、CD为铅直方向的边,AF、DE、BC为水平方向的边,点E在AB、CD之间,且在AF、BC之间,我们称这样的图形为“L图形”,若一条直线将该图形的面积分为面积相等的两部分,则称此直线为该“L图形”的等积线.(1)如图2所示四幅图中,直线L是该“L图形”等积线的是 (填写序号).(2)如图3,直线m是该“L图形”的等积线,与边BC、AF分别交于点M、。
