好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学立体几何知识点归纳总结.docx

13页
  • 卖家[上传人]:资****
  • 文档编号:274763694
  • 上传时间:2022-04-09
  • 文档格式:DOCX
  • 文档大小:637.50KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精品名师归纳总结高中数学立体几何学问点归纳总结一、立体几何学问点归纳第一章 空间几何体(一)空间几何体的结构特点( 1)多面体——由如干个平面多边形围成的几何体 .围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体其中,这条定直线称为旋转体的轴 2)柱,锥,台,球的结构特点1. 棱柱1.1 棱柱 ——有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都可编辑资料 -- -- -- 欢迎下载精品名师归纳总结相互平行,由这些面所围成的几何体叫做棱柱1.2 相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱E' D'F' C'侧面 A' B' l底面侧棱E DF C可编辑资料 -- -- -- 欢迎下载精品名师归纳总结① 棱柱棱垂直于底面直棱柱底面是正多形其他棱柱A B正棱柱可编辑资料 -- -- -- 欢迎下载精品名师归纳总结②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体1.3 棱柱的性质:①侧棱都相等,侧面是平行四边形。

      ②两个底面与平行于底面的截面是全等的多边形③过不相邻的两条侧棱的截面是平行四边形④直棱柱的侧棱长与高相等,侧面与对角面是矩形1.4 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的 D1 C1可编辑资料 -- -- -- 欢迎下载精品名师归纳总结平方和如图】AC 2 AB2 AD 2 AA 2 A1可编辑资料 -- -- -- 欢迎下载精品名师归纳总结1 1 B1D可编辑资料 -- -- -- 欢迎下载精品名师归纳总结②(明白)长方体的一条对角线AC1 与过顶点 A 的三条 CA B可编辑资料 -- -- -- 欢迎下载精品名师归纳总结棱 所 成 的 角 分 别 是 , , , 那 么2 2 2 2 2 2cos cos cos 1, sin sin sin 2 可编辑资料 -- -- -- 欢迎下载精品名师归纳总结③(明白)长方体的一条对角线AC1 与过顶点 A 的相邻三个面所成的角分别是 , , ,可编辑资料 -- -- -- 欢迎下载精品名师归纳总结可编辑资料 -- -- -- 欢迎下载精品名师归纳总结就 cos2cos2cos22 , sin2sin2sin2 1 .可编辑资料 -- -- -- 欢迎下载精品名师归纳总结1.5 侧面绽开图 :正 n 棱柱的侧面绽开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形 .S直棱柱侧 c h可编辑资料 -- -- -- 欢迎下载精品名师归纳总结1.6 面积、体积公式:S c h2S , V(其中 c 为底面周长, hS h可编辑资料 -- -- -- 欢迎下载精品名师归纳总结2. 圆柱为棱柱的高)直棱柱全 底 棱柱 底可编辑资料 -- -- -- 欢迎下载精品名师归纳总结A'2.1 圆柱——以矩形的一边所在的直线为旋转轴, 其 O'余各边旋转而形成的曲面所围成的几何体叫圆柱 . B'母线2.2 圆柱的性质: 上、下底及平行于底面的截面都是等圆。

      过轴的截面(轴截面)是全等的矩形 .C' 轴轴截面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结2.3 侧面绽开图: 圆柱的侧面绽开图是以底面周长和母线长为邻边的矩形 .22.4 面积、体积公式 :A C 侧面OB底面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结可编辑资料 -- -- -- 欢迎下载精品名师归纳总结S 圆柱侧 = 2 rh S 圆柱全 = 2 rh2 r ,V 圆柱=S 底 h=r 2h (其中 r 为底面半径, h 为圆柱高)可编辑资料 -- -- -- 欢迎下载精品名师归纳总结可编辑资料 -- -- -- 欢迎下载精品名师归纳总结3. 棱锥3.1 棱锥——有一个面是多边形, 其余各面是有一个公共顶点的三角形,由这些 高面所围成的几何体叫做棱锥 侧棱正棱锥——假如有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥底面3.2 棱锥的性质:①平行于底面的截面是与底面相像的正 A多边形,相像比等于顶点到截面的距离与顶点究竟面的距离之比顶点 侧面S斜高D CO HB可编辑资料 -- -- -- 欢迎下载精品名师归纳总结②正棱锥各侧棱相等,各侧面是全等的等腰三角形。

      ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结边长一半,构成四个直角三角形 )(如上图:SOB,SOH ,SBH ,OBH 为直角三角形)可编辑资料 -- -- -- 欢迎下载精品名师归纳总结3.3 侧面绽开图: 正 n 棱锥的侧面绽开图是有 n 个全等的等腰三角形组成的可编辑资料 -- -- -- 欢迎下载精品名师归纳总结3.4 面积、体积公式: S 正棱锥侧 =1 ch , S 正棱锥全 =21 1ch S底 , V 棱锥 = S底2 3h .(其中 c 为底面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结周长, h 侧面斜高, h 棱锥的高)4. 圆锥4.1 圆锥—— 以直角三角形的始终角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥4.2 圆锥的性质:①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点究竟面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结的距离之比②轴截面是等腰三角形。

      如右图: SABS 顶点可编辑资料 -- -- -- 欢迎下载精品名师归纳总结③如右图: l 2h2 r 2 .母线 轴可编辑资料 -- -- -- 欢迎下载精品名师归纳总结4.3 圆锥的侧面绽开图: 圆锥的侧面绽开图是以顶点为圆心,以母线长为半径的扇形4.4 面积、体积公式:1 2h 侧面l轴截面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结S 圆锥侧= rl , S 圆锥全 =r 〔r l 〕 , V 圆锥 =3r h (其中A r O B可编辑资料 -- -- -- 欢迎下载精品名师归纳总结r 为底面半径, h 为圆锥的高, l 为母线长)5. 棱台5.1 棱台 ——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 .5.2 正棱台的性质:底面SD'上底面 C' 侧棱可编辑资料 -- -- -- 欢迎下载精品名师归纳总结①各侧棱相等,各侧面都是全等的等腰梯形②正棱台的两个底面以及平行于底面的截面是正多边形高下底面A' O' MB' 侧面斜高D CO N可编辑资料 -- -- -- 欢迎下载精品名师归纳总结③ 如右图:四边形形O`MNO , O `B`BO 都是直角梯 顶点 A B可编辑资料 -- -- -- 欢迎下载精品名师归纳总结④棱台常常补成棱锥讨论 .如右图:SO`M 与 SON , S`O `B`与 SOB相像 ,留意考虑相像比 .1可编辑资料 -- -- -- 欢迎下载精品名师归纳总结5.3 棱台的表面积、 体积公式:S全=S上底+ S下底+S 侧,V棱台 = ( S+3SS`S`〕 h ,(其中S, S`是可编辑资料 -- -- -- 欢迎下载精品名师归纳总结上,下底面面积, h 为棱台的高)6. 圆台6.1 圆台——用平行于圆锥底面的平面去截圆锥, 底面与截面之间的部分叫做圆台 .6.2 圆台的性质:①圆台的上下底面,与底面平行的截面都是圆。

      ②圆台的轴截面是等腰梯形③圆台常常补成圆锥来讨论如右图:SA r O'轴h母线l 轴截面上底面D侧面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结SO`A与SOB相像 ,留意相像比的应用 .B R CO下底面可编辑资料 -- -- -- 欢迎下载精品名师归纳总结26.3 圆台的侧面绽开图是一个扇环可编辑资料 -- -- -- 欢迎下载精品名师归纳总结6.4 圆台的表面积、体积公式:S全= rR2 〔 R r 〕 l ,可编辑资料 -- -- -- 欢迎下载精品名师归纳总结1 1 2 2可编辑资料 -- -- -- 欢迎下载精品名师归纳总结V 圆台 = (S+ SS` S`〕 h= ( r rR R〕h ,(其中 r, R 为上下底面半径, h 为高)可编辑资料 -- -- -- 欢迎下载精品名师归纳总结3 37. 球7.1 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球 .或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球7.2 球的性质:可编辑资料 -- -- -- 欢迎下载精品名师归纳总结①球心与截面圆心的连线垂直于截面。

      ② r R2 d 2 (其中,球心到截面的距离为 d、 球面球心 轴球的半径为 R、截面的半径为 r) 半径7.3 球与多面体的组合体: 球与正四周体,球与长方体,球与正方体等的内接与外切 . O可编辑资料 -- -- -- 欢迎下载精品名师归纳总结D' C' A' C' A' B'O OR dA r O1 B可编辑资料 -- -- -- 欢迎下载精品名师归纳总结可编辑资料 -- -- -- 欢迎下载精品名师归纳总结D CA B A c注:球的有关问。

      点击阅读更多内容
      相关文档
      浙江省温州市洞头区2025年九年级下学期数学基础素养第一次适应性检测试题含答案.pptx 四川省内江市2025年九年级中考数学第一次模拟考试卷.pptx 浙江省宁波市镇2025年中考数学一模试卷含答案.pptx 湖南省长沙市2025中考第一次模拟考试数学试卷含答案.pptx 浙江省金华市2025年中考一模数学模拟试题含答案.pptx 浙江省宁波市2025年九年级学业水平质量检测数学试卷含答案.pptx 湖南省长沙市2025年中考数学模拟卷含答案.pptx 浙江省宁波市镇海区2025年中考一模数学试题含答案.pptx 湖南省长沙市望城区2025年中考一模数学试题含答案.pptx 四川省内江市2025年中考一模考试数学试题含答案.pptx 广东省深圳市2025年九年级下学期第二次学业质量监测数学试卷(二模).pptx 浙江省温州市2025年中考一模数学试卷含答案.pptx 四川省绵阳市平武县2025年一模数学试题含答案.pptx 浙江省温州市2025年九年级学生学科素养检测数学试卷(二模)含答案.pptx 四川省绵阳市北川羌族自治县2025年中考一模数学试题含答案.pptx 浙江省绍兴市2025年初中毕业生学业水平调测数学试题含答案.pptx 四川省广元市2025年九年级中考一诊数学试题含答案.pptx 浙江省金华市2025年中考模拟预测数学试题含答案.pptx 湖南省长沙市2025年九年级中考一模数学试题.pptx 高考语文一轮复习讲义 课时精炼专题15 对点精练五 精准赏析艺术技巧.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.