
2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】.doc
25页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届湖北省孝感市八校数学九上开学质量检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道( )A.方差 B.平均数 C.众数 D.中位数2、(4分)若二次根式有意义,则a的取值范围是( )A.a<3 B.a>3 C.a≤3 D.a≠33、(4分)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )A. B. C. D.4、(4分)在,,,,,中分式的个数有( )A.2个 B.3个 C.4个 D.5个5、(4分)一次函数的图象如图所示,则不等式的解集是( )A. B. C. D.6、(4分)若关于的方程是一元二次方程,则的取值范围是( )A. B. C. D.7、(4分)点在反比例函数的图像上,则的值为( )A. B. C. D.8、(4分)△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是 ( )A.54 B.44 C.54或44 D.54或33二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.10、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.11、(4分)面积为的矩形,若宽为,则长为___.12、(4分)如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.13、(4分)如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在正方形中,,分别是,上两个点,. (1)如图1,与的关系是________;(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;(3)如图2,当点是的中点时,求证:.15、(8分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 (填序号).A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.16、(8分)化简:()÷并解答:(1)当x=1+时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?17、(10分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.18、(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一组数据5,8,x,10,4的平均数是2x,则这组数据的中位数是___________.20、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.21、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.22、(4分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)23、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.(1)画出四边形ABFE关于直线EF对称的图形;(2)若∠FDC=16°,直接写出∠GEF的度数为 ;(3)若BC=4,CD=3,写出求线段EF长的思路.25、(10分) (1)分解因式:﹣m+2m2﹣m3(2)化简:( +)÷(﹣).26、(12分)某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.(1)汽车行驶 h后加油,加油量为 L;(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。
详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.故选:D.本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、C【解析】根据被开方数是非负数,可得答案.【详解】解:由题意得,3−a⩾0,解得a⩽3,故选:C.本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3、D【解析】先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.【详解】四边形ABCD是正方形,AB=12,BM=5,.,,,,,,,,即,解得,,,,,,即,解得.故选D.本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.4、B【解析】根据分式的定义进行判断;【详解】,,,,中分式有:,,共计3个.故选:B.考查了分式的定义,解题关键抓住分式中分母含有字母.5、A【解析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<-2故选:A.本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.6、A【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-2≠1,m≠2,故选A.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.7、B【解析】把点M代入反比例函数中,即可解得K的值.【详解】解:∵点在反比例函数的图像上,∴,解得k=3.本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.8、C【解析】根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB -CD =16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,当y=0时,x-4=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB是以OA为斜边的等腰直角三角形,∴BC=OC=AC=2,即B点的坐标是(2,2),设平移的距离为a,则B点的对称点B′的坐标为(a+2,2),代入y=x-4得:2=(a+2)-4,解得:a=4,即△OAB平移的距离是4,∴Rt△OAB扫过的面积为:4×2=1,故答案为:1.本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.10、5【解析】由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S =S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD(AS。












