
北师大版数学九年级上册第二章精品课件:第1课时_行程(或动点)问题及平均变化率问题.pptx
26页2.6 应用一元二次方程,第1课时 行程问题及几何问题,1.掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果的合理性. (重点、难点) 2.理解将实际问题抽象为方程模型的过程,并能运用所学的知识解决问题,导入新课,小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?,例1 如图,某海军基地位于A处,在其正南方向200nmile 处有一目标B,在B的正东方向200nmile处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC的中点.一艘军舰沿A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品 送达军舰.,东,,,,北,A,B,C,D,F,,讲授新课,(1)小岛D与小岛F相距多少海里?,东,,,,北,A,B,C,D,F,,解:连接DF.AD=CD , BF=CF, DF是ABC的中位线. DFAB,且DF= AB,,ABBC, AB = BC =200n mile, DFBC, DF =100n mile.,东,,,,北,A,B,C,D,F,,(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里(结果精确到0.1海里)?,,E,解: 设相遇是补给船航行了x n mile,那么 DE = x n mile , AE + BE = 2x n mile, EF=AB +BF-(AB + BE) =(300 - 2x)n mile. 在RtDEF中,根据勾股定理可得方程 x2 = 1002 + (300 - 2x)2. 整理得: 3x2 - 1200 x + 100000 = 0 , 解方程得 (舍去),如图,在矩形ABCD中,AB=6cm, BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,那么几秒后五边形APQCD的面积为64cm2?,,A,B,C,D,,,,Q,P,解:设所需时间为 t s,根据题意,得 2t (6 - t) 2 = 612 - 64. 整理得 t2 - 6t + 8 = 0. 解方程,得 t1 = 2 , t2 = 4 . 答:在第2秒和第4秒是五边形面积是 64cm2.,(6 - t),2t,填空:假设某种糖的成本为每斤2元,售价为3元时,可卖100斤.,(1)此时的利润w= _____;,(2)若售价涨了1元,每斤利润为_____元,同时少买了10斤,销售量为_____斤,利润w=_____,(3)若售价涨了2元,每斤利润为_____元,同时少买了20斤,销售量为____斤,利润w=_____,100元,2,90,180元,3,80,240元,(4)若售价涨了3元,每斤利润为____元, 同时少买了30斤,销售量为____斤, 利润w=______,(5)若售价涨了4元,每斤利润为____元, 同时少买了40斤,销售量为____斤, 利润w=_______,(6)若售价涨了x元,每斤利润为____元, 同时少买了____斤,销售量为_______ 斤, 利润w=__________________,4,5,1+x,70,60,100-10 x,10 x,280元,300元,(1+x)(100-10 x)元,,3+x,,3-2+x,10 x,100-10 x,w=(3-2+x) (100-10 x),试一试:假设某种糖的成本每斤为2元,售价为3元时,可卖100斤.每涨1元,少卖10斤.设利润为x元,则总利润w为多少元(用含有x的式子表示出来)?,0,1,2,3,4,x,2,2,2,2,2,2,3,3+1,3+2,3+3,3+4,0,3-2,3-2+1,3-2+2,3-2+3,3-2+4,104,103,102,101,100,100-101,100-102,100-103,100-104,w=(3-2) 100,w=(3-2+1) (100-101),w=(3-2+3) (100-103),w=(3-2+4) (100-104),w=(3-2+2) (100-102),,3+x,,3-2+x,10 x,100-10 x,w=(3-2+x) (100-10 x),0,1,2,3,4,x,2,2,2,2,2,2,3,3+1,3+2,3+3,3+4,0,3-2,3-2+1,3-2+2,3-2+3,3-2+4,104,103,102,101,100,100-101,100-102,100-103,100-104,w=(3-2) 100,w=(3-2+1) (100-101),w=(3-2+3) (100-103),w=(3-2+4) (100-104),w=(3-2+2) (100-102),总利润,,(售价-进价) 销售量= 总利润,单件利润,,销售量,=,填空: 1. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,则下降率是 .如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,7%,4324.5,下降率=,下降前的量-下降后的量,下降前的量,2. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.,下降率x,第一次降低前的量,5000(1-x),第一次降低后的量,5000,下降率x,第二次降低后的量,第二次降低前的量,5000(1-x)(1-x),5000(1-x)2,5000(1-x),5000(1-x)2,例2 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,试求甲种药品成本的年平均下降率是多少?,解:设甲种药品的年平均下降率为x.根据题意,列方程,得,5 000 ( 1x )2 = 3000,,解方程,得,x10.225,x21.775.,根据问题的实际意义,甲种药品成本的年平均下降率约为22.5.,下降率不可为负,且不大于1.,练一练:前年生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨乙种药品的成本是3600元,试求乙种药品成本的年平均下降率?,解:设乙种药品的年平均下降率为y.根据题意,列方程,得,6 000 ( 1y )2 = 3 600.,解方程,得,y10.225,y21.775.,根据问题的实际意义,乙种药品成本的年平均下降率约为22.5.,解后反思,答:不能.绝对量:甲种药品成本的年平均下降额为(5000-3000)2=1000元,乙种药品成本的年平均下降额为(6000-3000)2=1200元,显然,乙种药品成本的年平均下降额较大,问题1 药品年平均下降额大能否说年平均下降率(百分数)就大呢?,答:不能. 能过上面的计算,甲、乙两种药品的年平均下降率相等.因此我们发现虽然绝对量相差很多,但其相对量(年平均下降率)也可能相等,问题2 从上面的绝对量的大小能否说明相对量的大小呢?也就说能否说明乙种药品成本的年平均下降率大呢?,问题3 你能总结出有关增长率和降低率的有关数量关系吗?,类似地 这种增长率的问题在实际生活中普遍存在,有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1x)n=b(其中增长取“+”,降低取“”).,变式1:某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%),解:设原价为1个单位,每次降价的百分率为 x. 根据题意,得,解这个方程,得,答:每次降价的百分率为29.3%.,变式2:某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%),解,设原价为a元,每次升价的百分率为x , 根据题意,得,解这个方程,得,由于升价的百分率不可能是负数, 所以 (不合题意,舍去),答:每次升价的百分率为9.5%.,例3 某公司去年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率,解:设这个增长率为x.根据题意,得,答:这个增长率为50%.,200+200(1+x) +200(1+x)2=950,整理方程,得,4x2+12x-7=0,,解这个方程得,x1=-3.5(舍去),x2=0.5.,增长率不可为负,但可以超过1.,1.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( ) A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500 2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为 .,B,2(1+x)+2(1+x)2=8,当堂练习,3.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712千克,求水稻每公顷产量的年平均增长率.,解:设水稻每公顷产量的平均增长率为x, 根据题意,得 系数化为1得, 直接开平方得, 则,答:水稻每公顷产量的年平均增长率为10%.,7200(1+x)2=8712,(1+x)2=1.21,1+x=1.1,,1+x=-1.1,x1=0.1,,x2=-1.1,,能力提升:菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售. (1)求平均每次下调的百分率;,解:设平均每次下调的百分率为x, 由题意,得 5(1x)2=3.2, 解得 x1=20%,x2=1.8 (舍去) 平均每次下调的百分率为20%;,(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.,解:小华选择方案一购买更优惠,理由如下: 方案一所需费用为:3.20.95000=14400(元); 方案二所需费用为:3.250002005=15000(元), 1440015000, 小华选择方案一购买更优惠.,利用一元二次方程 解决行程问题,,列方程步骤:,应用类型,,行程问题,平均变化率 问题,,面积问题,动点问题,审,,设,,列,,解,,检,,答,课堂总结,。












