
福建省龙岩市岩山中学2021-2022学年高二数学理月考试题含解析.docx
14页福建省龙岩市岩山中学2021-2022学年高二数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知点P的极坐标是(1,),则过点P且垂直极轴的直线方程是( )A B C D 参考答案:C2. 一个动点在圆x2+y2=1上移动时,它与定点(3,0)连线中点的轨迹方程是( )A.(x+3)2+y2=4 B.(X﹣3)2+y2=1 C.(X+)2+y2= D.(2x﹣3)2+4y2=1参考答案:D【考点】轨迹方程.【分析】根据已知,设出AB中点M的坐标(x,y),根据中点坐标公式求出点A的坐标,根据点A在圆x2+y2=1上,代入圆的方程即可求得中点M的轨迹方程.【解答】解:设中点M(x,y),则动点A(2x﹣3,2y),∵A在圆x2+y2=1上,∴(2x﹣3)2+(2y)2=1,即(2x﹣3)2+4y2=1.故选D.【点评】此题是个基础题.考查代入法求轨迹方程和中点坐标公式,体现了数形结合的思想以及分析解决问题的能力.3. 设,则( )A. B. C. D. 参考答案:C分析:由题意将替换为,然后和比较即可.详解:由题意将替换,据此可得:.本题选择C选项.点睛:本题主要考查数学归纳法中由k到k+1的计算方法,意在考查学生的转化能力和计算求解能力.4. 某同学做了一个如图所示的等腰直角三角形形状的数表且把奇数和偶数分别依次排在了数表的奇数行和偶数行,若用a(i,j)表示第 i行从左数第j个数,如a(4,3) = 10,则a(21,6) = ( )A.219 B.211 C.209 D.213参考答案:B略5. 若数列由确定,则的值为( )A.9900 B.9902 C.9904 D.9906参考答案:B6. 某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A. B. C. D.参考答案:B几何体如图S-ABCD,高为1,底面为平行四边形,所以四棱锥的体积等于. 7. 若为实数,则下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则参考答案:B8. 若,则k=A. 1 B.0 C.0或1 D.以上都不对参考答案:C略9. 给一些书编号,准备用3个字符,其中首字符用,,后两个字符用,,(允许重复),则不同编号的书共有A. 8本 B. 9本C. 12本 D. 18本参考答案:D10. 下列有关命题的说法错误的是( )A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0参考答案:C【考点】命题的真假判断与应用;四种命题间的逆否关系;必要条件、充分条件与充要条件的判断.【专题】综合题.【分析】根据四种命题的定义,我们可以判断A的真假;根据充要条件的定义,我们可以判断B的真假;根据复合命题的真值表,我们可以判断C的真假;根据特称命题的否定方法,我们可以判断D的真假,进而得到答案.【解答】解:命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”故A为真命题;“x=1”是“x2﹣3x+2=0”的充分不必要条件.故B为真命题;若p∧q为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:?x∈R,使得x2+x+1<0.则非p:?x∈R,均有x2+x+1≥0,故D为真命题;故选C.【点评】本题考查的知识点是命题的真假判断与应用,四种命题间的逆否关系,充要条件,是对简单逻辑综合的考查,属于简单题型.二、 填空题:本大题共7小题,每小题4分,共28分11. 椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是 .参考答案:【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.【解答】解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,解得e2(4e4﹣4e2+1)+4e2=1,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.【点评】本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.12. 直线ax+4y﹣a=0与直线6x+8y+5=0平行,则这两直线间的距离为 .参考答案:8【考点】两条平行直线间的距离.【专题】方程思想;待定系数法;直线与圆.【分析】根据两直线平行,先求出a的值,从而求出平行线间的距离即可.【解答】解:若直线ax+4y﹣a=0与直线6x+8y+5=0平行,则=,解得:a=3,则这两直线间的距离为|5﹣(﹣3)|=8,故答案为:8.【点评】本题考查了平行线间的关系,考查平行线间的距离,是一道基础题.13. 已知动点在椭圆上,若点坐标为,,且则的最小值是 ******** . 参考答案:14. 已知函数的图象在点A(x0,y0)处的切线斜率为1,则tanx0= _________ .参考答案:15. 矩阵A=的逆矩阵为 .参考答案:16. 数列的前n项和是 .参考答案:17. 观察下列不等式:,由此猜想第个不等式为 ▲ .参考答案:三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在图中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数、中位数(保留2位小数);(3)根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?参考答案:【考点】极差、方差与标准差;频率分布直方图.【分析】(1)由已知作出频率分布表,由此能作出作出这些数据的频率分布直方图.(2)由频率分布直方图能求出质量指标值的样本平均数、中位数位.(3)质量指标值不低于95的产品所占比例的估计值.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.【解答】解:(1)由已知作出频率分布表为:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228频率0.060.260.380.220.08由频率分布表作出这些数据的频率分布直方图为:(2)质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,∵[75,95)内频率为:0.06+0.26=0.32,∴中位数位于[95,105)内,设中位数为x,则x=95+×10≈99.74,∴中位数为99.74.(3)质量指标值不低于95 的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.19. 已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为ρsin(θ+)=2.(1)写出曲线C的普通方程和直线l的直角坐标方程;(2)设点P为曲线C上的动点,求点P到直线l距离的最大值.参考答案:【考点】QH:参数方程化成普通方程.【分析】第一问,利用平方关系消参,得到曲线C的普通方程,利用ρ2=x2+y2,x=ρcosθ,y=ρsinθ转化,得到直线l的直角坐标方程;第二问,利用点到直线的距离公式列出表达式,再利用两角和的正弦公式化简,求三角函数的最值即可得到结论.【解答】解:(1)曲线C的参数方程为(θ为参数),消去θ可得曲线C的普通方程为,直线l的极坐标方程为ρsin(θ+)=2.即直线l的直角坐标方程为x+y﹣4=0.(2)设点P坐标为(cosθ,sinθ),点P到直线l的距离d==.所以点P到直线l距离的最大值为.20. 已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程; (写一般式)(2)当直线l的倾斜角为45°时,求弦AB的长.参考答案:【考点】直线与圆相交的性质.【专题】计算题.【分析】(1)先求出圆的圆心坐标,从而可求得直线l的斜率,再由点斜式方程可得到直线l的方程,最后化简为一般式即可.(2)先根据点斜式方程求出方程,再由点到线的距离公式求出圆心到直线l的距离,进而根据勾股定理可求出弦长.【解答】解:(1)圆C:(x﹣1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y﹣2=x﹣2,即x﹣y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.【点评】本题主要考查直线与圆的位置关系,高考中对直线与圆的方程的考查以基础题为主,故平时就要注意基础知识的积累和应用,在考试中才不会手忙脚乱.21. (本小题满分12分)在锐角中,角所对边分别为,已知.(Ⅰ)求的值;(Ⅱ)若 求的值.参考答案:22. (本小题满分14分) 函数f(x)=|sin2x|+|cos2x|(Ⅰ)求f()的值;(Ⅱ)当x∈[0,]时,求f(x)的取值范围;(Ⅲ)我们知道,函数的性质通常指函数的定义域、值域、周期性、奇偶性、单调性等,请你探究函数f(x)的性质(本小题只需直接写出结论)参考答案:解:(Ⅰ) 2分(Ⅱ)当时,,则 ……………………3分∴ ………………5分又∵ ∴ ∴ ∴ 当时,的取值范围为. …………………………7分(Ⅲ)① 的定义域为; ……………………8分②为偶函数. 。












