
2024届浙江省宁波市鄞州区东钱湖、李关弟、实验中学八年级数学第二学期期末复习检测模拟试题含解析.doc
19页2024届浙江省宁波市鄞州区东钱湖、李关弟、实验中学八年级数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题(每题4分,共48分)1.下列根式中属最简二次根式的是( )A. B. C. D.2.方程①=1;②x2=7;③x+y=1;④xy=1.其中为一元二次方程的序号是( )A.① B.② C.③ D.④3.下列函数的图象经过(0,1),且y随x的增大而减小的是( )A.y=一x B.y=x-1 C.y=2x+1 D.y=一x+14.下面哪个点在函数的图象上( )A. B. C. D.5.已知直角三角形的两条直角边长分别为1和4,则斜边长为( )A.3 B. C. D.56.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个7.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )A.8 B.10 C.12 D.148.在下列图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.9.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为( )A. B. C.4 D.510.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有A. B.C. D.11.某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是( )A.甲成绩的平均分低于乙成绩的平均分;B.甲成绩的中位数高于乙成绩的中位数;C.甲成绩的众数高于乙成绩的众数;D.甲成绩的方差低于乙成绩的方差.12.下列命题正确的是( )A.有一个角是直角的四边形是矩形B.对角线互相垂直的平行四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.平行四边形的对角线相等二、填空题(每题4分,共24分)13.当x=_________时,分式的值为1.14.关于的一元二次方程x2+mx-6=0的一个根为2,则另一个根是 .15.正比例函数的图象经过点(-1,2),则此函数的表达式为___________.16.如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .17.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______18.如图,在中,是的角平分线,,垂足为E,,则的周长为________.三、解答题(共78分)19.(8分)某校八年级师生为了响应“绿水青山就是金山银山”的号召,在今年3月的植树月活动中到某荒山植树,如图是抽查了其中20名师生植树棵数的统计图.(1)求这20名师生种树棵数的平均数、众数、中位数;(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?20.(8分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?21.(8分)如图,在平面直角坐标系中,△ABC的坐标分别为A(﹣3,5),B(﹣4,2),C(﹣1,4)(注:每个方格的边长均为1个单位长度).(1)将△ABC沿着水平方向向右平移6个单位得△A1B1C1,请画出△A1B1C1;(2)作出将△ABC关于O点成中心对称的△A2B2C2,并直接写出的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.22.(10分)已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.23.(10分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 图1 图224.(10分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?25.(12分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:(1) ;(2) .26.求证:菱形的对角线互相垂直.参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式2、B【解析】本题根据一元二次方程的定义解答.【详解】解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,故选B.【点睛】本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3、D【解析】设该函数解析式为(k≠1),由该函数的图象经过(1,1)可得出b=1,由y随x的增大而减小可得出k<1,再对照四个选项即可得出结论.【详解】解:设该函数解析式为(k≠1).∵该函数的图象经过(1,1),∴b=1;∵y随x的增大而减小,∴k<1.故选D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出k<1及b=1是解题的关键.4、B【解析】把各点坐标代入解析式即可求解.【详解】A. ,y=4×1-2=2≠-2,故不在直线上;B. ,y=4×3-2=10,故在直线上; C. ,y=4×0.5-2=0,故不在直线上; D. ,y=4×(-3)-2=-14,故不在直线上.故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.5、C【解析】根据勾股定理计算即可.【详解】解:由勾股定理得,斜边长=,故选:C.【点睛】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.6、B【解析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.7、C【解析】解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且 又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选C.8、C【解析】解:A、是轴对称图形但不是中心对称图形,故本选项错误;B、既不是轴对称图形也不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、中心对称图形是但不是轴对称图形,故本选项错误;故选C9、C【解析】设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.10、C【解析】设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【详解】解:设该店春装原本打x折,依题意,得:500()2=1.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11、D【解析】通过计算甲、乙的平均数可对A进行判断;利用中位数的定义对B进行判断;利用众数的定义对C进行判断;根据方差公式计算出甲、乙的方差,则可对D进行判断.【详解】甲的平均数= (分),乙的平均数= =8 (分) ,所以A选项错误;甲的中位数是8分,乙的中位数是9分,故B选项错误;甲的众数是8分,乙的众数是10分,故C选项错误;甲的方差=,乙的方差=,故D选项正确,故选:D.【点睛】此题考查数据的统计计算,正确掌握平均数的计算公式,众数、中位数的计算方法,方差的计算公式是解题的关键.12、B【解析】利用矩形的判定、菱形的判定及正方形的判定方法分别判断后即可确定正确的选项.【详解】解:A、有一个角是直角的平行四边形是矩形,故错误;B、对角线互相垂直的平行四边形是菱形,故正确;C、对角线互相垂。












