好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

考研数学高数典型题型.docx

9页
  • 卖家[上传人]:ni****g
  • 文档编号:380109468
  • 上传时间:2023-11-07
  • 文档格式:DOCX
  • 文档大小:1.59MB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 考研数学高数典型题型一、函数、极限与连续  求分段函数的复合函数;  求极限或已知极限确定原式中的常数;  讨论函数的连续性,判断间断点的类型;  无穷小阶的比较;  讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根  二、一元函数微分学  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;  利用洛比达法则求不定式极限;  讨论函数极值,方程的根,证明函数不等式;  利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;  几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;  利用导数研究函数性态和描绘函数图形,求曲线渐近线  三、一元函数积分学  计算题:计算不定积分、定积分及广义积分;  关于变上限积分的题:如求导、求极限等;  有关积分中值定理和积分性质的证明题;  定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;  综合性试题。

        四、向量代数和空间解析几何  计算题:求向量的数量积,向量积及混合积;  求直线方程,平面方程;  判定平面与直线间平行、垂直的关系,求夹角;  建立旋转面的方程;  与多元函数微分学在几何上的应用或与线性代数相关联的题目  五、多元函数的微分学  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;  求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;  求二元、三元函数的方向导数和梯度;  求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;  多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值这部分应用题多要用到其他领域的知识,考生在复习时要引起注意  六、多元函数的积分学  二重、三重积分在各种坐标下的计算,累次积分交换次序;  第一型曲线积分、曲面积分计算;  第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;  第二型(对坐标)曲面积分的计算,高斯公式及其应用;  梯度、散度、旋度的综合计算;  重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

      数学一考生对这部分内容和题型要引起足够的重视  七、无穷级数  判定数项级数的收敛、发散、绝对收敛、条件收敛;  求幂级数的收敛半径,收敛域;  求幂级数的和函数或求数项级数的和;  将函数展开为幂级数(包括写出收敛域);  将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);  综合证明题  八、微分方程  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;  求解可降阶方程;  求线性常系数齐次和非齐次方程的特解或通解;  根据实际问题或给定的条件建立微分方程并求解;  综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等2014考研[微博]的复习已进入了关键的冲刺阶段,对于公共课的数学复习来说,采取积极的心态、掌握适合自己的复习方法恰当的复习方法及逐渐强化应试技巧,能在最后40多天里快速提高成绩,接下来是太奇考研小编为考生整理分享的2014考研数学高数六大必考题型,供考生复习参考。

        1.求极限  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!  2.利用中值定理证明等式或不等式,利用函数单调性证明不等式  证明题虽不能说每年一定考,但也基本上十年有九年都会涉及等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性这里泰勒中值定理的使用时的一个难点,但考查的概率不大  3.一元函数求导数,多元函数求偏导数  求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。

        另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点极值的充分条件、必要条件均涉及二元函数的偏导数  4.级数问题  常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值  5.积分的计算 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等  6.微分方程  解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。

      这需要考生对方程与其通解、特解之间的关系熟练掌握以上这六大题型可以说是高数部分的重点考查内容,考生可以根据自己的实际情况围绕重点题型复习最后,预祝考生们2014取得好成绩!。

      点击阅读更多内容
      相关文档
      25秋国家开放大学《0-3岁婴幼儿的保育与教育》形考任务1-4参考答案.docx 25秋国家开放大学《0-3岁婴幼儿卫生与保育》形考任务1-3+期末大作业参考答案.docx 25秋国家开放大学《0-3岁婴幼儿教育学》期末大作业参考答案.docx 25秋国家开放大学《Android核心开发技术》形考任务1-7参考答案.docx 国开2025年秋季《形势与政策》大作业答案.docx 国开2025年秋季《形势与政策》专题测验1-5答案.docx 2025年辽宁普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年广西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年6月浙江普通高中学业水平选择性考试地理试卷(原卷+答案).doc 2025年江西普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年内蒙古普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年贵州普通高中学业水平选择性考试英语试卷(原卷+答案).doc 2025年安徽普通高中学业水平选择性考试生物试卷(原卷+答案).doc 2025年辽宁普通高中学业水平选择性考试数学试卷(原卷+答案).doc 2025年广东普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年1月云南省高考适应性测试物理试卷(原卷+答案).doc 2025年江苏普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年甘肃普通高中学业水平选择性考试语文试卷(原卷+答案).doc 2025年陕西普通高中学业水平选择性考试生物试卷1(原卷+答案).doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.