
山东省济南市舜耕中学2022-2023学年高二数学理月考试题含解析.docx
12页山东省济南市舜耕中学2022-2023学年高二数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 如果a<0,b>0,那么,下列不等式中正确的是 ( ).参考答案:A略2. 已知满足约束条件 则的最大值为( )A . B. C. D. 参考答案:D3. 如图,在平面直角坐标系中,两个非零向量与轴正半轴的夹角分别为和,向量满足,则与轴正半轴夹角取值范围是( )(A) (B) (C) (D)参考答案:B4. 对于使成立的所有常数中,我们把的最小值1叫做的上确界,若,且,则的上确界为( )A. B. C. D.-4参考答案:B略5. 函数的定义域为D,若对于任意,,当时,都有,则称函数在D上为非减函数,设函数在[0,1]上为非减函数,且满足以下的三个条件:①, ②, ③,则( )A. B. C.1 D.参考答案:A略6. 已知数列是等差数列,其前项和为,若,且,则( )(A) (B) (C) (D) 参考答案:C7. 已知点A(1,3)、B(5,2),点P在x轴上,使|AP|–|BP|取得最大值时P的坐标( ) A. (4,0) B. (13,0) C. (5,0) D. (1,0) 参考答案:B8. 把函数的图像向左平移个单位,所得图像的解析式是( )A. B. C. D.参考答案:B略9. 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )A.(﹣3,0)∪(3,+∞) B.(﹣3,0)∪(0,3) C.(﹣∞,﹣3)∪(3,+∞) D.(﹣∞,﹣3)∪(0,3)参考答案:D【考点】利用导数研究函数的单调性.【分析】先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(﹣3)=0可求得答案.【解答】解:设F(x)=f (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(﹣x)=f (﹣x)g (﹣x)=﹣f (x)?g (x)=﹣F(x).故F(x)为(﹣∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,+∞)上亦为增函数.已知g(﹣3)=0,必有F(﹣3)=F(3)=0.构造如图的F(x)的图象,可知F(x)<0的解集为x∈(﹣∞,﹣3)∪(0,3).故选D10. 点P是直线y=x﹣1上的动点,过点P作圆C:x2+(y﹣2)2=1的切线,则切线长的最小值是( )A. B. C. D.参考答案:C【考点】直线与圆的位置关系.【分析】由圆的标准方程,找出圆心坐标和圆的半径,要使切线长的最小,则必须点P到圆的距离最小,求出圆心到直线y=x﹣1的距离,利用切线的性质及勾股定理求出切线长的最小值即可.【解答】解:∵圆C:x2+(y﹣2)2=1,∴圆心C(0,2),半径r=1.由题意可知,点P到圆C:x2+(y﹣2)2=1的切线长最小时,CP⊥直线y=x﹣1.∵圆心到直线的距离d=,∴切线长的最小值为: =.故选C.二、 填空题:本大题共7小题,每小题4分,共28分11. 下列各数 、 、 、 中最小的数是___ 参考答案:12. 如右图所示的程序框图输出的结果是_______ 参考答案:略13. 已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为 .参考答案:9【考点】双曲线的定义;双曲线的简单性质;双曲线的应用.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.【点评】本题主要考查了双曲线的定义,考查了学生对双曲线定义的灵活运用.14. 若直线与函数图象的切线垂直且过切点,则实数 ▲ . 参考答案:略15. 实数x,y满足x2+y2﹣4x+3=0,则的最大值是 .参考答案:【考点】直线与圆的位置关系.【专题】直线与圆.【分析】圆即 (x﹣2)2+y2=1,而表示圆上的点(x,y)与原点O连线的斜率,显然,当过原点的直线和圆相切时,斜率取得最值.由于OA=2AN=2AM,故有∠NOA=∠MOA=30°,故ON的斜率等于tan30°=,为所求的最大值.【解答】解:x2+y2﹣4x+3=0 即 (x﹣2)2+y2=1,表示以A(2,0)为圆心,半径等于1的圆.而表示圆上的点(x,y)与原点O连线的斜率,如图所示:ON OM为圆的两条切线,显然,当过原点的直线和圆相切时,斜率取得最值.由于OA=2AN=2AM,故有∠NOA=∠MOA=30°,故ON的斜率等于tan30°=,为最大值,故答案为:.【点评】本题主要考查圆的标准方程,直线的斜率公式,直线和圆的位置关系,属于中档题.16. 若0<α<,0<β <且tanα=,tanβ=,则α+β的值是________.参考答案:17. 设函数f(x)=g(x)+x2,若曲线y=g(x)在点(1,g(x))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为 (写出一般式)参考答案:4x﹣y=0【考点】利用导数研究曲线上某点切线方程.【分析】先根据曲线y=g(x)在点(1,g(1))处的切线方程求出g'(1)与g(1),再通过求f'(1)求出切线的斜率,以及切点坐标,即可求出切线方程.【解答】解:∵曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g'(1)=2,g(1)=3∵f(x)=g(x)+x2,∴f'(x)=g'(x)+2x即f'(1)=g'(1)+2=4,f(1)=g(1)+1=4∴切点坐标为(1,4),斜率为4∴曲线y=f(x)在点(1,f(1))处的切线方程为4x﹣y=0故答案为:4x﹣y=0.【点评】本题主要考查了导数的几何意义,以及如何求切线方程,题目比较新颖,属于基础题.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 已知曲线C: (t为参数), C:(为参数)1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值 参考答案:① ; ②圆的圆心,半径3 圆心到直线的距离为 19. 已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).(1)求抛物线C的方程;(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积.参考答案:【考点】抛物线的简单性质.【分析】(1)把点A(1,﹣2)代入抛物线C:y2=2px(p>0),解得p即可得出.(2)F(1,0).设M(x1,y1),N(x2,y2).直线l的方程为:y=x﹣1.与抛物线方程联立可得根与系数的关系,利用弦长公式可得:|MN|=.利用点到直线的距离公式可得:原点O到直线MN的距离d.利用△OMN的面积S=即可得出.【解答】解:(1)把点A(1,﹣2)代入抛物线C:y2=2px(p>0),可得(﹣2)2=2p×1,解得p=2.∴抛物线C的方程为:y2=4x.(2)F(1,0).设M(x1,y1),N(x2,y2).直线l的方程为:y=x﹣1.联立,化为x2﹣6x+1=0,∴x1+x2=6,x1x2=1.∴|MN|===8.原点O到直线MN的距离d=.∴△OMN的面积S===2.20. 本小题满分12分)已知曲线上一点,求:(Ⅰ)点处的切线方程;(Ⅱ)点处的切线与轴、轴所围成的平面图形的面积.参考答案: 21. (本小题满分分)已知函数,.(Ⅰ)若函数的图象在处的切线与轴平行,求的值;(Ⅱ)若,,恒成立,求的取值范围.参考答案:(Ⅰ) -----------------2分因为在处切线与轴平行,即在切线斜率为即,∴. -----------------5分(Ⅱ), 令,则,所以在内单调递增,(i)当即时,,在内单调递增,要想只需要,解得,从而 -----------------8分(ii)当即时,由在内单调递增知,存在唯一使得,有,令解得,令解得,从而对于在处取最小值,,又,从而应有,即,解得,由可得,有,综上所述,的取值范围为. -----------------12分22. (12分)在中,角对的边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的面积参考答案:(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0, …(8分)解得ab=4或ab=﹣1(舍去) …(10分)。












