
北师大版八年级数学下册-第五章--分-式-ppt课件.ppt
268页第五章 分 式导入新课讲授新课当堂练习课堂小结5.1认识分式 第1课时分式的有关概念学习目标1.了解分式的概念;2.理解分式有意义的条件及分式值为零的条件(重点)3.能熟练地求出分式有意义的条件及分式的值为零的条件(难点)导入新课导入新课情境引入第十届田径运动会(1)如果乐乐的速度是7米/秒,那么她所用的时间是()秒;(2)如果乐乐的速度是a米/秒,那么她所用的时间是()秒;(3)如果乐乐原来的速度是a米/秒,经过训练她的速度每秒增加了1米,那么她现在所用的时间是()秒.7100a100a+1100填空:乐乐同学参加百米赛跑(4)后勤老师若把体积为200cm3的水倒入底面积为33cm2的圆柱形保温桶中,水面高度为()cm;若把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为().VS(5)采购秒表8块共8a元,一把发射枪b元,合计为元.(8a+b)讲授新课讲授新课分式的概念一问题1:请将上面问题中得到的式子分分类:7100a100a+1100单项式:多项式:既不是单项式也不是多项式:a100a+11008a+b8a+b整式7100问题2:式子它们有什么相同点和不同点?相同点不同点(观察分母)从形式上都具有分数形式分母中是否含有字母7100a100a+1100分子f、分母g 都是整式知识要点分式的定义 一般地,用A,B表示两个整式,AB可以表示成的形式,且B中含有字母,那么称 为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母不能为零.u理解要点:(1)分式也是代数式;(2)分式是两个整式的商,它的形式是(其中A,B都是整式并且还要求B是含有字母的整式);(3)A称为分式的分子,B为分式的分母.思考:思考:(1)分式与分数有何联系?分数是分式中的字母取某些值的结果,分式更具一般性.整数整数整式整式(分母含有字母)分数分式类比思想特殊到一般思想7100a+1100整数分数整式分式有理数有理式数、式通性(2)既然分式是不同于整式的另一类式子,那么它们统称为什么呢?数的扩充式的扩充判一判:下面的式子哪些是分式?分式分式: :归纳:1.判断时,注意含有的式子,是常数.2.式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:.规则:从本班选出6名同学到讲台选取自己的名牌:1,a+1,c-3,2(b-1),d2再选1名学生发号指令,计时3秒钟6名学生按要求自由组合数学运动会想一想:我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式 中的分母应满足什么条件?当B=0时,分式 无意义.当B0时,分式 有意义.分式有意义的条件二问题3.已知分式,(1)当x=3时,分式的值是多少?(2)当x=-2时,你能算出来吗?不行,当x=-2时,分式分母为0,没有意义.即当x_时,分式有意义.(3)当x为何值时,分式有意义?当x=3时,分式值为一般到特殊思想类比思想-2例1(1)当a=1,2,-1时,分别求出分式 的值;(2)当a取何值时,分式有意义.解:(1)当a=1时, 当a=2时, 当a=-1时, (2)当分母的值等于零时,分式没有意义,除此之外,分式都有意义. 由分母2a-1=0,得 所以,当 时,分式 有意义. 例2 已知分式 有意义,则x应满足的条件是()A.x1Bx2Cx1且x2D以上结果都不对方法总结:分式有意义的条件是分母不为零.如果分母是几个因式乘积的形式,则每个因式都不为零.C(2)当x 时,分式 有意义;(1)当x 时,分式 有意义;xy(3)当b 时,分式 有意义;(5)当x 时,分式 有意义;(4)当 时,分式 有意义.做一做:为任意实数想一想:分式 的值为零应满足什么条件?当f=0而而g0时,分式 的值为零.注意:分式值为零是分式有意义的一种特殊情况.分式值为零的条件三解:当分子等于零而分母不等于零时,分式的值为零.的值为零.当x=1时分式 x-1.而x+10,x=1,则x2-1=0,例3 当x为何值时,分式 的值为零?变式训练(1)当时,分式的值为零.x=2【解析】要使分式的值为零,只需分子为零且分母不为零,解得x=2.(2)若的值为零,则x【解析】分式的值等于零,应满足分子等于零,同时分母不为零,即解得3分式的值为.因此当时,(2)当x-2=0,即x=2时,解:(1)当2x-3=0,即时,分式的值不存在;例4:当x取什么值时,分式的值.(1)不存在;(2)等于0?有2x-3=40,例5:求下列条件下分式的值.(1)x =3;(2)x=0.4.解(1)当x=3时,(2)当x =0.4时,3.填表:x-3-2-1012301-2-1练一练填表:当堂练习当堂练习1.下列代数式中,属于分式的有()A.B.C.D.C2.当a1时,分式的值()A.没有意义B.等于零C.等于1D.等于1A3.当x为任意实数时,下列分式一定有意义的是( )A.B. C.D.A4.已知,当x=5时,分式的值等于零,则k=.-105.列式表示下列各量:(1)某村有n个人,耕地40公顷,人均耕地面积为 公顷;(2)ABC的面积为S,BC边长为a,高AD为 ;(3)一辆汽车行驶a千米用b小时,它的平均车速为 千米/小时;一列火车行驶a千米比这辆汽车少用1小时,它的平均车速为 千米/小时.6.在分式 中,当x为何值时,分式有意义?分式的值为零? 答:当x 3时,该分式有意义;当x=-3时,该分式的值为零.7.分式的值能等于0吗?说明理由答:不能.因为必须x=-3,而x=-3时,分母x2-x-12=0,分式无意义.课堂小结课堂小结分式定义值 为 零的 条 件有 意 义的 条 件分式 有意义的条件是 g0.分式 值为零的条件是 f=0且g0.概念:一个整式 f 除以一个非零整式g(g中含字母)所得的商 .第五章 分 式导入新课讲授新课当堂练习课堂小结5.1认识分式 第2课时分式的基本性质学习目标1.理解并掌握分式的基本性质(重点)2.会运用分式的基本性质进行分式的约分和通分(难点)导入新课导入新课情境引入分数的基本性质分数的分子与分母同时乘以(或除以)一个不等于零的数,分数的值不变.2.这些分数相等的依据是什么?1.把3个苹果平均分给6个同学,每个同学得到几个苹果?讲授新课讲授新课分式的基本性质一思考:下列两式成立吗?为什么?分数分数分数分数的分子与分母同时乘以(或除以)一个不的分子与分母同时乘以(或除以)一个不的分子与分母同时乘以(或除以)一个不的分子与分母同时乘以(或除以)一个不等于等于等于等于0 0的数,的数,的数,的数,分数分数分数分数的值不变的值不变的值不变的值不变. .分数的基本性质:即对于任意一个分数有:想一想:类比分数的基本性质,你能猜想分式有什么性质吗?思考:u分式的基本性质: 分式的分子与分母乘以(或除以)同一个不等于0的整式,分式的值不变.上述性质可以用式表示为:其中A,B,C是整式.知识要点例1填空:看分母如何变化,想分子如何变化.看分子如何变化,想分母如何变化.典例精析想一想:(1)中为什么不给出x 0,而(2)中却给出了b0?想一想:运用分式的基本性质应注意什么?(1)(1)“都”(2) (2) “同一个”(3) (3) “不为0”例2不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.解:不改变分式的值,使下列分子与分母都不含“”号解:(1)原式=(2)原式=(3)原式=练一练想一想:联想分数的约分,由例1你能想出如何对分式进行约分?分式的约分二()()与分数约分类似,关键是要找出分式的分子与分母的最简公分母. 把一个分式的分子与分母的公因式约去,这种变形称为分式的约分知识要点约分的定义在在化化简简分分式式 时时,小小颖颖和和小小明明的的做做法法出现了分歧:出现了分歧:小颖:小颖:小明:小明:你对他们俩的解法有何看法?说说看! 一般约分要彻底, 使分子、分母没有公因式. 议一议 判断一个分式是不是最简分式,要严格按照定义来判断,就是看分子、分母有没有公因式.分子或分母是多项式时,要先把分子、分母因式分解.注意知识要点u最简分式分子和分母都没有公因式的分式叫做最简分式.例3 约分: : 典例精析分析:为约分要先找出分子和分母的公因式.找公因式方法:(1)约去系数的最大公约数.(2)约去分子分母相同因式的最低次幂.解:(公因式是5abc)解:分析:约分时,分子或分母若是多项式,能分解则必须先进行因式分解.再找出分子和分母的公因式进行约分.约分: :做一做解:(公因式是ab)解:知识要点约分的基本步骤()若分子分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;()若分子分母含有多项式,则先将多项式分解因式,然后约去分子分母所有的公因式注意事项:(1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.当堂练习当堂练习2.下列各式中是最简分式的( )B1.下列各式成立的是()A.B.C.D.D3.若把分式A扩大两倍B不变C缩小两倍D缩小四倍 的 x 和y 都扩大两倍,则分式的值( )B4.若把分式中的和都扩大3倍,那么分式的值().A扩大3倍B扩大9倍C扩大4倍D不变A A5.下列各分式,哪些是最简分式?哪些不是最简分式?解: 最简分式:不是最简分式:解:6.约分课堂小结课堂小结分 式 的基本性质内容作用分式进行约分的依据注意(1)分子分母同时进行;(2)分子分母只能同乘或同除,不能进行同加或同减;(3)分子分母只能同乘或同除同一个整式;(4)除式是不等于零的整式进行分式运算的基础第五章 分 式导入新课讲授新课当堂练习课堂小结5.2分式的乘除法学习目标1.掌握分式的乘除运算法则.(重点)2.能够进行分子、分母为多项式的分式乘除法运算(难点)导入新课导入新课情境引入问题1 一个长方体容器的容积为V,底面的长为a,宽为b,当容器内的水占容积的 时,水高多少?长方体容器的高为长方体容器的高为 , ,水高为问题问题2 2 大拖拉机大拖拉机mm天耕地天耕地a a公顷公顷, ,小拖拉机小拖拉机n n天耕天耕地地b b公顷公顷, ,大拖拉机的工作效率是小拖拉机的工作大拖拉机的工作效率是小拖拉机的工作效率的多少倍效率的多少倍? ? 大拖拉机的工作效率是 公顷/天,小拖拉机的工作效率是 公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的( )倍. 想一想: 类比分数的乘除法法则,你能说出分式的乘除法法则吗?讲授新课讲授新课分式的乘除一填空:类比探究类似于分数,分式有:u乘法法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.u除法法则: 两个分式相乘,把除式的分子和分母颠倒位置后再与被除式相乘.上述法则用式子表示为:归纳法则例1 计算:解:典例精析注意:按照法则进行分式乘除运算,如果运算结果不是最简分式,一定要进行约分,使运算结果化成最简分式.先把除法转化为乘法约分解:(1)原式(2)原式(1)(2)做一做方法归纳 分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算例2 计算:解:原式= 分子、分母是多项式时,先分解因式便于约分.约分解:原式原式= = 先把除法转化为乘法. 整式与分式 运算时,可以把整式看成分母是1的分式负号怎么得来的?(1)解:原式做一做解:原式(2)1.分式的分子、分母都是几个因式的积的形式,可先约去分子、分母的公因式,再按照法则进行计算.2.分子或分母是多项式的按以下方法进行:将原分式中含同一字母的各多项式按降幂(或升幂)排列;在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式;把各分式中分子或分母里的多项式分解因式;应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)要点归纳分式乘除法的解题步骤当x=1999,y=-2000时,得做一做方法总结:根据分式乘除法法则将代数式先进行计算化简,再代入求值.同时注意字母的取值要使分。
