
中学代数公式大全.doc
29页目 录一、初中代数 1二、高中代数 42.1、函数 4不等式 7数列 8三角函数 9复数 112.2排列、组合 122.3平面几何 13直线与角 13三角形 142.4立体几何 14直线与平面 14多面体、棱柱、棱锥 172.5解析几何 17方程与曲线 17直线 18圆 19椭圆 19双曲线 202.5抛物线 202.6向量部分 21空间向量 21平面向量 22三、常用公式 233.1常用公式 233.2几何图形及计算公式 25四、坐标几何和二维、三维图形 274.1坐标几何 274.2二维图形 284.3三维图形 29一、初中代数 【实数的分类】 【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数零的相反数是零绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零 从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
倒数】1除以一个非零实数的商叫这个实数的倒数零没有倒数完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根开方】求一数的方根的运算叫做开方算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值 【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式 【分式】除式中含字母的有理式叫分式【有理数的运算律】【等式的性质】【乘法公式】【因式分解】【方程】方 程 含有未知数的等式叫做方程 方程的解 在未知数允许值范围内,能使方程两边相等的未知数的值叫做方程的解 解 方 程 在指定范围内求出方程所有解,或者确定方程无解的过程,叫做解方程 【一元一次方程】一元一次方程:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方程 【一元二次方程】二、高中代数2.1、函数【集合】 指定的某一对象的全体叫集合。
集合的元素具有确定性、无序性和不重复性集合的分类】 【集合的表示方法】 名 称 定 义 图 示 性 质子 集 真 子 集 交集 并集 补集 函数的性质定 义 判定方法 函数的奇偶性函如果对一函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数 函数的单调性对于给定的区间上的函数f(x): 函数的周期性对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数不为零的常数T叫做这个函数的周期 (1)利用定义 (2)利用已知函数的周期的有关定理 函数名称解析式 定义域 值 域 奇偶性 单 调 性 正比例函数R R 奇函数 反比例函数奇函数 一次函数RR二次函数R函数名称解析式 定义域 值 域 奇偶性 单 调 性 正比例函数R R 奇函数 反比例函数奇函数 一次函数RR二次函数R不等式不等式 用不等号把两个解析式连结起来的式子叫做不等式 不等式的性质 含绝对值不等式的性质 几个重要的不等式 一元一次不等式的解法 形 式 解 集 R 一元二次不等式的解法 R 绝对值不等式的解法 无理不等式的解法 数列名称 定 义 通 项 公 式 前n项的和公式 其它 数列 按照一定次序排成一列的数叫做数列,记为{an} 如果一个数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式就叫这个数列的通项公式 等差数列 等比数列 数列前n项和与通项的关系:无穷等比数列所有项的和: 数学归纳法 适 用 范 围 证 明 步 骤 注 意 事 项 只适用于证明与自然数n有关的数学命题 设P(n)是关于自然n的一个命题,如果(1)当n取第一个值n0(例如:n=1或n=2)时,命题成立(2)假设n=k时,命题成立,由此推出n=k+1时成立。
那么P(n)对于一切自然数n都成立 (1)第一步是递推的基础,第二步的推理根据,两步缺一不可 (2)第二步的证明过程中必须使用归纳假设 三角函数角一条射线绕着它的端点旋转所产生的图形叫做角旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点 角的单位制关 系弧 长 公 式 扇 形 面 积 公 式 角度制 弧度制角的终边位 置 角 的 集 合 在x轴正半轴上 在x轴负半轴上 在x轴上 在y轴上在第一象限内 在第二象限内 在第三象限内 在第四象限内 特殊角的三角函数值函数/角 0 sina010-10 cosa10-101 tana01不存在0不存在0 cota不存在10不存在0不存在 三角函数的性质函数定义域值域奇偶性周期性 单 调 性 y=sinx R奇函数y=cosx R偶函数y=tanx R奇函数y=cotx R奇函数角/函数 正弦 余弦 正切 余切 -a -sina cosa -tana -cota 900a cosa sina cota tana 900+a cosa -sina -cota -tana 1800-a sina -cosa -tana -cota 1800+a -sina -cosa tana cota 2700-a -cosa -sina cota tana 2700+a -cosa sina -cota -tana 3600-a -sina cosa -tana -cota sina cosa tana cota 同角公式倒数关系 商数关系 平方关系 和差角公式 /倍角公式万能公式半角公式积化和差公式和差化积公式复数复数的定义 引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。
形如:a+bi(a,b为实数) a---实部 b----虚部 复数的表示形式 代数形式 三角形式 复数的运算 代数式 三角式 2.2排列、组合分 类 计 数 原 理 分 步 计 数 原理 做一件事,完成它有n类不同的办法第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有mn种方法,则完成这件事共有:N=m1+m2+…+mn种方法 做一件事,完成它需要分成n个步骤第一步中有m1种方法,第二步中有m2种方法……,第n步中有mn种方法,则完成这件事共有:N=m1•m2•…•mn种方法 注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤” 排 列 组 合 从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列 从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合 排 列 数 组 合 数 从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Pnm 从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm 选 排 列 数 全 排 列 数 二 项 式 定 理 二项展开式的性质 (1)项数:n+1项 (2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。
而每项中a与b的指数之和均等于n 3)二项式系数:各奇数项的二项式数之和等于各偶数项的二项式的系数之和 2.3平面几何直线与角直 线 (不定义)直线向两方无限延伸,它无端点 射 线 在直线上某一点旁的部分射线只有一个端点 线 段 直线上两点间的部分它有两个端点 垂 线 如果两条直线相交成直角,那么称这两条直线互相垂直其中一条叫另一条的垂线,它们的交点叫垂。
