好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

氮化铝陶瓷的烧结简介及调控(毕业论文)..docx

53页
  • 卖家[上传人]:今***
  • 文档编号:105916330
  • 上传时间:2019-10-14
  • 文档格式:DOCX
  • 文档大小:1.07MB
  • / 53 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 目录摘 要 2ABSTRACT 3第一章:绪论 41.1 氮化铝陶瓷的基本性质 41.2 氮化铝陶瓷的导热机理 71.2.1 氮化铝热导率的影响因素 81.2.2获得高热导率氮化铝陶瓷的方法 101.3 氮化铝陶瓷的制备工艺 111.3.1 氮化铝粉末的制备及方法 111.3.2 氮化铝坯体的成型 131.3.3 氮化铝陶瓷的烧结 151.4 氮化铝陶瓷的应用和发展 171.4.1 氮化铝陶瓷的应用 171.4.2 氮化铝陶瓷的发展 181.5 本文的研究方向 19第二章:实验 212.1 实验原料及仪器设备 212.1.1 原料 212.1.2 仪器设备 212.2 实验步骤 222.3 氮化铝陶瓷的性能测试 232.3.1 体积密度测试 232.3.2 XRD测试 232.3.3 导热性能测试 242.3.4 介电性能测试 242.3.5微观结构分析 24第三章:实验数据处理分析 253.1 烧结助剂对氮化铝陶瓷体积密度的影响 263.1.1 GaF2- Sm2O3体系的烧结助剂对氮化铝体密度的影响 263.1.2 GaF2- Nd2O3体系复合烧结助剂对氮化铝体密度的影响 283.2 保温时间对氮化铝陶瓷性能的影响 283.2.1 保温时间对氮化铝陶瓷致密度的影响 283.2.2 保温时间对氮化铝陶瓷介电性能的影响 30第四章 总结与展望 334.1 总结 334.2 展望 33致 谢 34参考文献 35附 录 38摘 要AlN陶瓷以其高的热导率、低的介电常数、与硅相匹配的热膨胀系数等优点,在模块电路、可控硅整流器、大功率晶体管、大功率集成电路等电子器件上的应用日益广泛。

      然而AlN共价性强,烧结非常困难,通常使用稀土金属氧化物和碱土金属氧化物添加剂形成液相来促进烧结本文研究了添加不同复合烧结助剂氮化铝陶瓷低温常压烧结工艺详细研究了所添加的复合烧结助剂和保温时间对AlN陶瓷性能的影响本文研究了常压下的烧结工艺和不同复合助剂对AlN陶瓷性能的影响以高氮化铝粉体作为原料,采用Nd2O3、CaO、Y2O3、CaF2、Li2O、LiYO2、Sm2O3为烧结助剂,样品经先干压再等静压成型,在氮气气氛保护下,经1600℃温度下烧结,并设定了2h、4h、6h、8h不同的保温时间,获得了氮化铝陶瓷样品测定了试样的收缩率、体积密度、介电常数等性能;通过扫描电镜观察了试样的微观形貌结果表明,添加复合烧结助剂中,加入CaF2-Y2O3均有助于氮化铝陶瓷的致密化,能得到晶粒细小、均匀的氮化铝陶瓷添加3.53%Y2O3-0.5%CaF2-0.47%Li2O,在1600℃保温6小时,得到收缩率为18.6%,体密度为3.2499 g/cm3的氮化铝样品关键词:氮化铝陶瓷 烧结助剂 常压烧结ABSTRACTAluminum nitride is being used more widely in electronic device for module circuit、silicon controlled rectifier、high power transistor and high power integrated circuit because of its high thermal conductivity, low dielectric constant and thermal expansion coefficient close to that of silicon .However, A1N is difficult to sinter due to its high covalent bonding. For full densification, rare-earth and/or alkaline earth oxides are often added as sintering aids in the fabrication of A1N ceramics. In this thesis, the process of fabrication and sinter AlN bulks in the Atmospheric pressure and its compound additives system was studied. This paper studies the aluminum nitride ceramic low temperature method of preparation. With high purity nitriding aluminum body as raw material, adopting Nd2O3、CaO、Y2O3、CaF2、Li2O、LiYO2、Sm2O3 as sintering additives, compound sample by dry pressing and static pressure molding, nitrogen atmosphere in the protection and aluminum nitride conditions, the 16000 ℃ temperature sintering, and set the 2h, 4h, 6h, 8h as the insulation time ,won the aluminum nitride ceramic samples. Determination of the sample of area, volume density, dielectric constant and the performance; Through the scanning electron microscopy (SEM) the microstructure of the sample. The results show that AlN ceramic sample with density of 3.2452g/cm3,contraction percentage of 18.6% was prepared by adding 3.53%Y2O3-0.5%CaF2-0.47%Li2O and sintering in 1600℃ for 6h.Keywords: AlN ceramic; Conventional sintered; composite additives第一章:绪论随着信息技术和智能终端设备的飞速发展,大规模集成电路向着高速化、高效率、多功能、小型化的方向发展,各种应用对高性能、高密度电路的需求越来高。

      然而,电路密度和功能不断提高的同时,不可避免的导致电路工作温度不断上升,对电子设备的正常运行带来极大隐患为了防止元件因热聚集以及热循环作用而导致损坏,对基板材料的低介电常数、低热膨胀系数、高热导率等方面提出越来越苛刻的要求目前,市场上高热导率材料主要有BeO、SiC和AlNBeO是一种性能优异的封装材料,但遗憾的是,BeO是一种有毒的物质,目前世界上许多的国家已将BeO列入禁用材料,对于含有BeO的元件或系统的使用也有着很多限制;SiC热导率虽然高达270W/m×K,但是其介电常数大(约40,1MHz),这个缺陷大大限制了SiC在高频领域的应用,不适合做基板材料;但是AlN不仅有高的热导率(25℃下为140-200W/(m·K),是Al2O3的5-10倍),单晶AlN更是高达320W/m×K,而且具有优异的绝缘性(25℃时体电阻率大于1016Ω·m)、低介电常数(25℃下为8.8MHz)以及与Si相近的热膨胀系数(4.5×10-6/℃,可以减小因热应力作用引起的元件/基片界面的剥离故障),另外,从结构上看AlN陶瓷基片在简化结构设计、提高可靠性、降低总热阻、增加布线密度、使基板与封装一体化以及降低封装成本等方面均具有更显著的优势【1】。

      因此,随着航空、航天及其他智能功率系统对大功率耗散要求的提高,AlN基片已成为大规模集成电路以及大功率模块的一种重要的新型无毒基片材料许多发达国家都相继投入了大量的人力物力,开展了对AlN基板材料的研究开发,并取得了显著的成果同时我国也对AlN基板材料进行了研究,但由于我国起步较晚,因此与国外相比有较大的差距总而言之,综合性能优越的新型电子陶瓷——AlN陶瓷因为其与BeO陶瓷相近的性能和无毒的特点成为了新一代集成电路封装材料的首选1.1 氮化铝陶瓷的基本性质A1N是一种人造陶瓷材料,Ⅲ-Ⅴ族半导体氮化物(GaN、AlN、BN、InN)一般在光学、电学和半导体领域都具有很大应用潜能氮化铝(AlN)是Al、N唯一稳定的化合物, 氮原子和铝原子之间主要以共价键结合,属于二元共价化合物AIN有两种基本晶体结构(如图1-1所示) 图1-1. AlN的晶体结构(b)AlN闪锌矿结构(a)AlN六方纤锌矿结构其中(a)所示的AIN属于六方纤锌结构(h-AIN),6mm点群,P63mc空间群,其晶格常数为a=0.311nm,c=0.498nm,理论密度为3.26g/cm3其晶胞结构如图1-2所示:图1-2. 氮化铝的晶胞结构Al原子与周围的4个N原子形成一个四面体,其中3个Al-i(i=l,2,3)键,称之为Bl,长为0.1885nm;沿c轴方向的Al-N0键,键长为0.1917nm,称之为B2。

      N0-Al-Ni的键角为107.70 º,Ni-Al-Ni的键角为110.50º同理以N原子为中心也形成了一个四面体,两个四面体形成具有C3V对称的三棱柱在AlN晶胞中,Al和N原子均形成4个SP杂化轨道,Al原子有三个半满和一个空轨道,而N原子有三个半满和一个全满轨道B2键就是由Al原子的空轨道与N原子的满轨道形成的因此在c轴方向的B2键离子成分大,B2键的键能比其他三个等性的Bl键的键能相对要小,易断裂,因而c轴方向的沉积所需的溅射粒子能量大b)所示的AlN属于闪锌矿结构(C-AIN),具有类似金刚石的结构,F-43m空间群,其晶格常数为4.342nm,理论密度为3.32g/cm3,在体材料中很少出现,它的形成需要一定的内应力【2】AlN与其它高热导无机非金属材料(金刚石、BN、SiC、BeO等)类似,在结构方面具有以下四个共同特点,使其具备高热导性能:(1)低的原子质量;(2)强的原子间键合;(3)简单的晶体结构;(4)低的非简谐性同时强度极大的共价键使得氮化铝具备高熔点,且藉由共价键的共振形成声子传递热能,使得氮化铝同时具备高热传导性纯净的AlN陶瓷事无色透明的,然而通常使用的氮化铝材料由于混入的杂质不同而呈现出各种颜色。

      在1个大气压下,AlN不会熔化,而会在温度高于2400K时发生分解【3】氮化铝的主要结构特性如表1-1所示表1-1. 纤锌矿结构氮化铝的物理和光学性能[9-10]物理参数纤维锌矿氮化铝密度(g/cm3)3.26热稳定性(℃)2200熔点(℃)2400功函数(eV)5.35禁带宽度(eV)6.2热导率(W/m•k)320热膨胀系数(K-1)∆a/a=4.2•10-6 ∆c/c=5.3•10-6电阻率(Ωcm)~1013介电强度(kV/mm)14介电常数8.5±0.2表面声速(cm/s)6•105折射率2.15±0.5弹性模量(KN/mm2)300~310。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.