二次根式知识点.doc
2页一)二次根式的定义和概念: 1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式当a≥0时,√ā表示a的算术平方根当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 2、概念:式子√ā(a≥0)叫二次根式√ā(a≥0)是一个非负数 (二)二次根式√ā的简单性质和几何意义 1)a≥0 ; √ā≥0 [ 双重非负性 ] 2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3) c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论 (三)二次根式的性质和最简二次根式 如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等; 含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等 (3)最终结果分母不含根号 (四)二次根式的乘法和除法 1.积的算数平方根的性质 √ab=√a·√b(a≥0,b≥0) 2. 乘法法则 √a·√b=√ab(a≥0,b≥0) 二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.除法法则 √a÷√b=√a÷b(a≥0,b>0) 二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算数平方根 4.有理化根式 如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式 (五)二次根式的加法和减法 1 同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式 2 合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式 3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并 (六)二次根式的混合运算 1确定运算顺序 2灵活运用运算定律 3正确使用乘法公式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 (七)分母有理化 分母有理化有两种方法 I.分母是单项式 如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多项式 要利用平方差公式 如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如图 注意:1.根式中不能含有分母 2.分母中不能含有根式。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


