好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第三章植物的光合作用培训讲学.ppt

77页
  • 卖家[上传人]:yuzo****123
  • 文档编号:232819306
  • 上传时间:2021-12-31
  • 文档格式:PPT
  • 文档大小:1.13MB
  • / 77 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 单击此处编辑母版标题样式单击此处编辑母版副标题样式* *1 1植物的光合作用 第三章植物的光合作用第一节 光合作用的重要性第二节 叶绿体及叶绿体色素第三节 光合作用的机制第四节 光呼吸第五节 影响光合作用的因素第六节 植物对光能的利用第三章 植物的光合作用碳素的意义异养植物:微生物,少数高等植物自养植物:大多数高等植物碳素同化作用:吸收二氧化碳,转变成有机物质的过程.细菌光合作用 绿色植物光合作用 化能合成作用光合作用的重要性1,是制造有机物质的重要途径 植物吸收71011吨CO2/每年, 合成51011吨有机物2, 是一个巨型能量转换过程 通过光合作用所同化的太阳能为1.71018千卡 100倍3,是产生地球上大气中O2的源泉(环境保护)释放4.61011吨氧/每年二,光合作用的特点 CO2+2H2O (CH2O)+O2+ H2OCO2+2H2O (CH2O)+O2+H2O水的氧化-水的光氧化 CO2的还原-在暗中进行1818181818水被氧化成分子态氧二氧化碳被还原成糖同时发生日光能的吸收,转化和贮藏1937年 R.Hill 希尔(Hill)反应叶绿体的悬浮液 渗透势 PH 赤血盐 光2Fe(CN)63-+H2O Fe(CN)64-+2H+ +1/2O2 Fe3+1/2H2O Fe2+H+1/4O2光叶绿体水的光氧化和二氧化碳的还原是分开.非绿色部分+绿色部分+暗处+ CO2(NaH CO3)-(CH2O) 光合作用的发现十八世纪初期 营养全部来自土壤1727 Hales 部分营养来自于大气 光也参与了1771 Joseph Priestly 英国牧师薄荷枝条 燃着的蜡烛 密闭钟罩 小鼠植物能净化空气 1414141771 定为发现光合作用的年代1779 Jan Ingenhousz 荷兰净化空气时需光参与 夜间要把植物移出室外1782 JeanSenebier瑞士动物,植物在黑暗产生的有害气体()可植物在光下放氧CO2是光合作用所必需的,氧是光合作用的产物1804 Nicholas TH ,de Saussare进行了光合作用的第一次定量的测定 水的作用发现光合作用期间所得的重量大于它吸收的二氧化碳的重量减去它所释放的氧的重量之差-这个差值就是水的吸收,同时他注意到在过程中:等体积的二氧化碳和氧进行交换1864 Julius Sachs观察在照光的叶绿体中淀粉粒会增长光合作用的另一个产物是有机物 CO2+H2O (CH2O)+O2细菌的光合作用十九世纪的三十年代 C B Van Niel某些细菌 醋酸 琥珀酸 H2SCO2+2H2S (CH2O)+H2O+2S比较 植物释放的氧来自水,而不是二氧化碳(推测)光能绿色植物1941 Samuel Ruben 美国生物化学家 H2O 小球藻 质谱仪 CO2+2H2O (CH2O)+O2+H2O18光能绿色植物1818第二节 叶绿体及叶绿体色素叶绿体多呈椭园碟形,长约4-6微米,厚约2-3微米,主要分布在叶的棚栏和海绵组织中,50-100叶绿体/每个叶肉细胞一,叶绿体的结构和成分叶绿体的结构内膜,外膜,间质,间质类囊体,基粒类囊体,基粒外被(内,外膜):双层膜,选择透性,控制物质的进出类囊体:光合膜把光能转化成化学能,光合色素集中在类囊体膜内间质:无色的,核糖体,DNA,RNA,在其中合成蛋白质和酶 .成分水量为75-80% 干物质中:蛋白质30-50% 脂类20-35% 色素8% 灰分10% 脂类中质体醌类 电子传递链中重要成员蛋白质:与叶绿素结合的蛋白质吸收并传递光能含Cu,Fe或Mn的蛋白质 含Fe的有两类:含血红素铁 Cytf和Cytb6.含非血红素铁 铁硫蛋白 铁氧还蛋白叶绿素类(叶绿素a b c d)类胡萝卜素类藻胆素类二,光合色素的化学特性叶绿素(a,b)1,结构是叶绿酸的酯 叶绿酸是双羧酸 羧基的羟基分别被是甲醇(CH3OH)和叶绿醇(C20H39OH)所酯化叶绿素a C32H30ON4MgCOOCH3COOC20H39叶绿素b C32H28O2N4MgCOOCH3COOC20H39 叶绿醇 是叶绿素分子的亲脂部分,是长链亲脂“尾巴”,伸入类囊体内 “头部”是金属卟啉环,Mg偏正电荷,N原子偏带负电荷,呈极性,具亲水性(可和蛋白质结合),排列在类囊体脂类的表面.叶绿素的化学性质不溶于水 而溶于有机溶剂用水配85%丙酮提取叶绿素皂化作用C32H30ON4Mg +2KOH C32H30ON4Mg +CH3OH+C20H39OHCOOCH3COOC20H39COOKCOOK皂化叶绿素甲醇叶醇 形成去镁叶绿素 phMg+2H+ Ph +Mg+ 褐色 ph + Cu+(Zn+) phCu(Zn)+2H+HHHH绿色三,叶绿素的光学性质吸收光谱波长在600-660nm的红光 叶绿素波长在430-450nm蓝紫光 卟啉化合物绿光吸收最少图基态第二单线态60千卡第一单线态-43千卡三线态31千卡磷光荧光红光(吸收)兰光(吸收)放热放热叶绿素分子的激发态,光的吸收,磷光和荧光的关系热热激发态所需能量 E=Nhv =Nhc/E 能量 千卡/爱因斯坦N 6.0231023h 普朗克常数 1.5810-34卡.秒c 光速 31010/秒 波长 700nm 能量为 40.86千卡/爱因斯坦 600nm 47.67千卡/爱因斯坦叶绿素中的电子或n电子被激发,发生电子的跃迁荧光和磷光现象荧光现象: 叶绿素溶液在透射光下呈绿色,而在反射光呈红色磷光现象:类胡萝卜素胡萝卜素 橙黄色叶黄素 黄色 收集光能-反应中心 使叶绿体免受光照伤害藻胆素 吸收光能-反应中心四 叶绿素的形成叶绿素的生物合成植物的叶色叶绿素/类胡萝卜素 3:1叶绿素a/叶绿素b 3:1叶黄素/胡萝卜素 2:1 绿色 秋天 黄色秋天降温 花色素苷 红色叶绿素合成影响:光 温度 矿质(氮 镁 铁 锰)第三节 光合作用的机制一,机理概述光反应 暗反应19341940 R.Hill 英国 H2O+B H2B+1/2O2光合作用的机理可分为原初反应电子传递和光合磷酸化碳的同化, 属于光反应,是在基粒层上进行暗反应,是在基质上进行光叶绿体 光合作用各种能量转变的概况能量转变 光能 电能 活跃化学能 稳定化学能贮藏能量的物质 量子 电子 质子,ATP, 糖类 NADPH完成能量转变过程 原初反应 电子传递 碳同化 光合磷酸化进行转变的部位 基粒类囊体 基粒类囊体 基质光,暗反应 光反应 光反应 暗反应二,光反应原初反应反应中心色素能够直接引起光合作用反应的色素,既是光能捕捉器,又是光能的转换器.少数叶绿素a聚光色素 没有光化学活性,只有收集光能的作用,把光能聚中起来,传到作用中心色素.大部分的叶绿素a和全部的叶绿素b,胡萝卜素,叶黄素,藻胆素.光合作用单位 在饱和光照之后,植物在黑暗中还原一个二氧化碳分子或放出一个氧分子所需要的叶绿素分子数目.吸收传递1个光量子到反应中心色素所需叶绿素 200-300叶绿素分子光合反应中心 是由反应中心色素分子P,及其原初电子受体A,和原初电子供体D所组成.原初光化学反应 指反应中心色素分子吸收光能所引起的氧化还原反应 DPA DP*A DP+A- D+PA-电子传递和光合磷酸化光系统量子产额:吸收一个光量子后放出的氧分数或固定的二氧化碳分子数.红降现象:当光波大于685nm时,光子仍然被叶绿素大量吸收,但量子产额急剧下降.爱默生效应(增益效应):在大于685nm条件下,如补充650nm波长,则量子产额大增,比这两种波长的光单独照射的总和还要多.光反应 PS颗粒较小,分布在类囊体膜的非叠合部合. 反应中心色素 P700 长波光反应将NADP还原.荧光较弱.光系统 PS颗粒大,主要分布在类囊体膜的叠合部分.短波光反应,荧光较强,水的光解和放氧.PSPS核心复合体包括:反应中心P700,电子受体和PS捕光复合体(LHC)LHC(吸收光能)- P700-原初电子受体A0次级电子受体A1(叶醌)-铁硫中心(Fe-S)铁氧还蛋白(Fd),然后在铁氧还蛋白-NADP还原酶(Fp),把电子交给NADP+,完成非循环电子传递. Fd也可把电子交给Cytb6,传回PQ,形成围绕PS-循环电子传递.PS核心复合体, PS捕光复合体(LHC),放氧复合体(OEC)利用光能氧化水和还原质体醌,在腔一侧氧化水释放质子,在基质一侧还原质体醌.PS的水裂解放氧 2H2O O2+4H+4e-放氧复合体(OEC):多肽,放氧有关的锰复合物,氯和钙离子组成P680P680*-去镁叶绿素(Pheo) PS中的电子传递光子LHC(吸收光能)P680-P680*-PheoQA-QB-PQH2PQ 释放H+到腔内,利于ATP合成细胞色素b6f复合体两个Cytb6,一个Cytf,一个RieskeFe-S.PQH2 可移动的电子载体,将两个电子分别传给Cytb6f中的Fe-S和Cytb6.再给CytfPCPQ循环图1.51.00.50-0.5-1.5氧化还原中点电势Em/VH2OOECO2+H+TyrP680+e-P680*PheoQAQBP700+P700*e-A0A1Fe-SxFe-SA,BFdFpNADP+Cytb6LCytb6HPQH2Fe-SCytfPCPQCytb6fhvhvPSPS叶绿体的光合作用电子传递途径(Z方案)PQ穿梭:PQ在叶绿素中含量最高,它通过自身的氧化还原作用传递电子,并将质子从间质移至类囊体膜内的空间,PQ本身的这种氧化还原的往复变化称PQ穿梭.光合磷酸化光合磷酸化:利用贮存在跨类囊体膜的质子梯度的光能把ADP和无机磷合成为ATP的过程.光合磷酸化非循环光合磷酸化OEC水裂解H+释放到类囊体腔内-电子传递到PS,再传递中,PQ把外侧的H+转移到腔内,形成了跨膜的H+浓度差,使ATP形成,同时把电子传递到PS,提高能位,H+还原NADP+成NADPH,还放出O2, 在基粒片层进行. 2ADP+2Pi+2NADP+2H2O 2ATP +2NADPH+O2循环光合磷酸化 PS产生的电子经过一些传递体传递后,伴随着形成腔内外H+浓度差,只引起ATP的形成,不放氧,也无NADP+还原反应.后经PC重回起点,在基质片层进行. ADP+Pi ATP光光 2,ATP合酶(耦联因子)由头部(CF1)和柄部(CF0)组成.CF1在类囊体的表面,由5种多肽组成.CF0伸入类囊体内,由4种多肽组成,这些多肽组成横跨类囊体的通道,以通过质子图H+H+PiADP+ATPCF1CF0基质类囊体膜腔ATP合酶的结构光合磷酸化机制1961 P.Mitchell 化学渗透假学1962水的裂解释放的H+留在内侧,PQ又将质子排入膜内侧,膜内侧质子浓度高,电位也较膜外侧高.产生了质子浓度差和电位差(质子动力),当H+沿着浓度梯度返回膜外侧时,在ATP合酶催化下,ATP就形成了.1963光能-ATP和NADP中(活跃的化学能)1964同化(能)力:ATP,NADPH(用于暗反应的CO2同化)三,碳同化能量:把ATP和NADPH的活跃的化学能,转化成稳定的化学能-糖类物质:碳同化形成了大量的有机物质 放射性14C示踪和纸层析技术20世纪50年代 卡尔文(M。

      Calvin)和本生(Benson)单细胞藻类 14CO2 照光 酒精 14C标记化合物二氧化碳的受体是核酮糖二磷酸,还原戊糖磷酸途径,C3途径,卡尔文途径,光合环 C3植物 水稻 小麦 棉花 大豆二十世纪六十年代 Hatch Slack 玉米 高梁 甘蔗 14CO2最早标记的是草酰乙酸C4-二羧酸C4途径,Hatch-Slack循环后来,仙人掌,凤梨科植物景天酸代谢途径(CAM)卡尔文循环:羧化阶段 还原阶段 更新阶段 羧化阶段CO2的受体是核酮糖-1,5-二磷酸 CH2OPC=OHCOHHCOHCH2OP+*CO2+CH2OHCOHCOOH*+COOHHCOHCH2OPPRubisco3-磷酸甘油酸 Rubisco:11个大亚基,八个小亚基组成的蛋白质,大量存在于绿色细胞中,约占叶绿体蛋白质总。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.