好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

教育专题:54第4讲功能关系能量守恒定律.ppt

94页
  • 卖家[上传人]:枫**
  • 文档编号:602817467
  • 上传时间:2025-05-17
  • 文档格式:PPT
  • 文档大小:6.08MB
  • / 94 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 易错剖析,·,误区警示,基础盘点,·,自测自评,要点透析,·,典例精讲,经典考题,·,知能检验,模拟考场,·,实战演练,易错剖析,·,误区警示,基础盘点,·,自测自评,要点透析,·,典例精讲,经典考题,·,知能检验,模拟考场,·,实战演练,易错剖析,·,误区警示,基础盘点,·,自测自评,要点透析,·,典例精讲,经典考题,·,知能检验,模拟考场,·,实战演练,易错剖析,·,误区警示,基础盘点,·,自测自评,要点透析,·,典例精讲,经典考题,·,知能检验,模拟考场,·,实战演练,易错剖析,·,误区警示,基础盘点,·,自测自评,要点透析,·,典例精讲,经典考题,·,知能检验,模拟考场,·,实战演练,第,4,讲 功能关系 能量守恒定律,运用功能关系解题时,,,应弄清楚各力做什么功,,,合外力做什么功,,,除重力、弹力外的力做什么功,,,从而判断重力势能或弹性势能、动能、机械能的变化,.,,ΔE,增,和,ΔE,减,的物理意义是什么?,,提示,:,ΔE,增,为末状态的能量减去初状态的能量,,,而,ΔE,减,为初状态的能量减去末状态的能量,.,1.,已知货物的质量为,m,,在某段时间内起重机将货物以,a,的加速度加速升高,h,,则在这段时间内,下列叙述正确的是,(,重力加速度为,g)( ),,A.,货物的动能一定增加,mah-mgh,,B.,货物的机械能一定增加,mah,,C.,货物的重力势能一定增加,mah,,D.,货物的机械能一定增加,mah+mgh,【,解析,】,选,D.,根据动能定理可知,货物动能的增加量等于货物合外力做的功,mah,,,A,错误;根据功能关系,货物机械能的增量等于除重力以外的力做的功而不等于合外力做的功,,B,错误;由功能关系知,,,重力势能的增量对应货物重力做的负功的大小,mgh,C,错误;由功能关系,,,货物机械能的增量为起重机拉力做的功,m(g+a)h,D,正确,.,2.(2011,·,广州模拟,),下列说法正确的是,( ),,A.,随着科技的发展,第一类永动机是可以制成的,,B.,太阳照射到地球上的光能转化成了其他形式的能量,但照射到宇宙空间的能量都消失了,,C.,“,既要马儿跑,又让马儿不吃草,”,违背了能量转化和守恒定律,因而是不可能的,,D.,有种,“,全自动,”,手表,不用上发条,也不用任何形式的电源,却能一直走动,说明能量可以凭空产生,【,解析,】,选,C.,第一类永动机违背了能量守恒定律,所以不可能制成,,A,错误;根据能量守恒定律,太阳照射到宇宙空间的能量也不会凭空消失,,B,错误;要让马儿跑,必须要给马儿吃草,否则就违背能量守恒定律,,C,正确,;,所谓,“,全自动,”,手表内部还是有能量转化装置的,一般有一个摆锤,当人戴着手表活动时,摆锤不停地摆动,给游丝弹簧补充能量,才会维持手表的走动,,D,错,.,3.(2011,·,吉林模拟,),如图所示,,,小球从,A,点以初速度,v,0,沿粗糙斜,,面向上运动,到达最高点,B,后返,,回,A,,,C,为,AB,的中点,.,下列说法中正确的是,( ),,A.,小球从,A,出发到返回,A,的过程中,位移为零,外力做功为零,,B.,小球从,A,到,C,过程与从,C,到,B,过程,减少的动能相等,,C.,小球从,A,到,C,过程与从,C,到,B,过程,速度的变化量相等,,D.,小球从,A,到,C,过程与从,C,到,B,过程,损失的机械能相等,【,解析,】,选,B,、,D.,小球从,A,出发到返回,A,的过程中,重力做功为零,摩擦力做负功,,A,错误;小球从,A,到,C,过程与从,C,到,B,过程中,合外力做功相等,动能的增量相等,但速度的变化量不等,,B,正确,,C,错误;小球从,A,到,C,过程与从,C,到,B,过程,损失的机械能等于克服摩擦力做的功,而克服摩擦力做的功相等,故,D,正确,.,4.,如图所示,质量为,m,的小铁块,A,以,,水平速度,v,0,冲上质量为,M,、长为,l,、,,置于光滑水平面,C,上的木板,B,,正好,,不从木板上掉下,.,已知,A,、,B,间的动摩擦因数为,μ,,此时长木板对地位移为,s,,求这一过程中:,,(1),木板增加的动能;,,(2),小铁块减少的动能;,,(3),系统机械能的减少量;,,(4),系统产生的热量,.,【,解析,】,在此过程中摩擦力做功的情况:设,A,和,B,所受摩擦力分别为,F,、,F′,,且,F=,μmg,,,A,在,F,的作用下减速,,B,在,F′,的作用下加速;当,A,滑动到,B,的右端时,,A,、,B,达到相同的速度,v,,就正好不掉下,.,,(1),对,B,,根据动能定理有:,μmg,·,s,= Mv,2,-0 ①,,从上式可知,ΔE,kB,=,μmgs,,(2),滑动摩擦力对小铁块,A,做负功,根据功能关系可知,,ΔE,kA,=-,μmg(s+l,) ②,,(3),系统机械能的减少量由①、②可知,ΔE=,μmgl,,(4)m,、,M,相对位移为,l,,根据能量守恒,Q=,μmgl,.,,答案:,(1),μ,mgs (2),μ,mg(s+l) (3),μ,mgl (4),μ,mgl,,做功的过程就是能量转化的过程,但,“,功,”,并不是,“,能,”,,它仅是实现能量转化的途径,.,【,例证,1】(2011,·,杭州模拟,)(10,分,),一,,物块放在如图所示的斜面上,,,用力,F,沿,,斜面向下拉物块,物块沿斜面运动了,,一段距离,若已知在此过程中,拉力,F,所做的功为,A,,斜面对物块的作用力所做的功为,B,,重力做的功为,C,,空气阻力做的功为,D,,其中,A,、,B,、,C,、,D,的绝对值分别为,100 J,、,30 J,、,,100 J,、,20 J,,则,,(1),物块动能的增量为多少?,,(2),物块机械能的增量为多少?,,【,解题指导,】,解答本题应把握以下三点:,,(1),所有外力对物块所做的总功等于物块动能的增量,.,,(2),除重力以外的力对物块做的总功等于物块机械能的增量,.,,(3),明确各个力所做功的正、负,.,【,自主解答,】,(1),在物块下滑的过程中,拉力,F,做正功,斜面对物块有摩擦力,做负功,重力做正功,空气阻力做负功,.,根据动能定理,合外力对物块做的功等于物块动能的增量,则,,ΔE,k,=W,合,=A+B+C+D=100 J+(-30 J)+100 J+(-20 J),,=150 J (5,分,),,(2),根据功能关系,除重力之外的其他力所做的功等于物块机械能的增量,则,,ΔE,机,=A+B+D=100 J+(-30 J)+(-20 J)=50 J (5,分,),,答案:,(1)150 J (2)50 J,【,互动探究,】(1),物块重力势能的改变量为多少?,,(2),物块克服摩擦力做的功是多少?,,【,解析,】,(1),根据功能关系,重力做功等于重力势能的改变量,.,故,ΔE,p,=-W,G,=-C=-100 J.,,(2),斜面对物块的作用力有支持力和摩擦力,由于支持力与物块的位移垂直,支持力不做功,所以斜面对物块的作用力所做的功就是摩擦力对物块做的功,故物块克服摩擦力做的功,W,Ff,=-B=30 J.,,答案:,(1)-100 J (2)30 J,,【,规律方法,】,功能关系的选用技巧,,(1),在应用功能关系解决具体问题的过程中,,,若只涉及动能的变化用动能定理分析,.,,(2),只涉及重力势能的变化用重力做功与重力势能变化的关系分析,.,,(3),只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,.,,(4),只涉及电势能的变化用电场力做功与电势能变化的关系分析,.,利用,Q,=,F,f,·,L,相对,进行热量,Q,的计算时,关,,键是对相对路程,L,相对,的理解,.,例如:如果两物体同向运动,,,L,相对,为两物体对地位移大小之差;如果两物体反向运动,,,L,相对,为两物体对地位移大小之和;如果一个物体相对另一个,,物体往复运动,则,L,相对,为两物体相对滑行路径的总长度,.,【,例证,2】(2011,·,广州模拟,)(12,分,),,质量为,M,的长木板放在光滑的水平面,,上,一质量为,m,的滑块以某一速度沿,,木板表面从,A,点滑到,B,点,在板上前进了,L,,而木板前进了,l,,如图所示,若滑块与木板间的动摩擦因数为,μ,,求:,,(1),摩擦力对滑块和木板做的功;,,(2),系统产生的热量,.,,【,解题指导,】,(1),本题中的,L,、,l,、,L+l,分别为滑块相对木板的位移、木板的对地位移、滑块的对地位移,.,,(2),求功应用物体的对地位移,求热量应用物体间的相对位移,.,【,自主解答,】,(1),滑块的对地位移为,x,1,=,L+l,,摩擦力对滑块做的功为:,,W,1,=,-,F,f,x,1,=,-,μmg(L+l,) (4,分,),,木板的对地位移为,x,2,=l,,摩擦力对木板做的功为:,W,2,=F,f,x,2,=,μmgl,(4,分,),,(2),滑块相对木板的位移为,Δx,=L,,系统产生的热量,Q=,F,f,Δx,=,μmgL,(4,分,),,答案:,(1),-,μmg(L+l,),μmgl,(2)μmgL,【,变式训练,】,如图所示,,,一个小物体在,,足够长的斜面上以一定初速度释放,,,斜,,面各处粗糙程度相同,,,初速度方向沿斜,,面向上,,,则物体在斜面上运动的过程中,( ),,A.,动能一定是先减小后增大,,B.,机械能一直减小,,C.,如果某段时间内摩擦力做功与物体动能的改变量相同,,,则此后物体动能将不断增大,,D.,如果某段时间内摩擦力做功为,W,,再经过相同的时间,,,两段时间内摩擦力做功可能相等,【,解析,】,选,B,、,C,、,D.,物体减速到零时有可能静止在斜面上,,,其动能一直减小,,A,错误;由于摩擦力做负功,物体的机械能一直减小,,B,正确;,C,中说明重力做功为零,物体能反向沿斜面向下加速运动,,C,正确;由于物体可能反向沿斜面向下加速运动,在相等的两段时间内路程可能相同,则摩擦力做的功相同,,D,正确,.,三、对能量守恒定律的理解和应用,,1.,对定律的理解,,(1),某种形式的能减少,,,一定存在其他形式的能增加,,,且减少量和增加量一定相等,.,即,ΔE,减,=ΔE,增,.,,(2),某个物体的能量减少,,,一定存在其他物体的能量增加,,,且减少量和增加量一定相等,.,即,ΔE,A,减,=ΔE,B,增,.,2.,应用能量守恒定律解题的步骤,,(1),分清有多少形式的能[如动能、势能,(,包括重力势能、弹性势能、电势能,),、内能等]在变化,.,,(2),明确哪种形式的能量增加,,,哪种形式的能量减少,,,并且列出减少的能量,ΔE,减,和增加的能量,ΔE,增,的表达式,.,,(3),列出能量守恒关系式,:ΔE,减,=ΔE,增,.,应用能量守恒定律解决有关问题,,,关键是准确分析有多少种形式的能量在变化,,,求出减少的总能量,ΔE,减,和增加的总能量,ΔE,增,,,然后再依据能量守恒定律列方程求解,.,【,例证,3】(2011,·,福州模拟,)(16,分,),,如图所示,,,光滑水平面,AB,与竖直面,,内的半圆形导轨在,B,点相切,,,半圆形,,导轨的半径为,R.,一个质量为,m,的物,,体将弹簧压缩至,A,点后由静止释放,,,在弹力作用下物体获得某一向右的速度后脱离弹簧,,,当它经过,B,点进入导轨的瞬间对轨道的压力为其重力的,8,倍,,,之后向上运动恰能到达最高点,C.(,不计空气阻力,),试求,:,,(1),物体在,A,点时弹簧的弹性势能,.,,(2),物体从,B,点运动至,C,点的过程中产生的内能,.,,【,解题指导,】,解答此题要注意以下两点:,,(1),物体在,A,点时弹簧的弹性势能应等于物体在,B,点的动能,.,,(2),物体由,B,到,C,损失的机械能转化为内能,.,,【,标准解答,】,(1),设物体在,B,点的速度为,v,B,,,弹力为,F,NB,,,则有,,,(3,分,),,又,F,NB,=8mg,,由能量转化与守恒可知,:,,弹性势能,,(4,分,),(2),设物体在,C,点的速度为,v,C,,,由题意可知,:,,(3,分,),,物体由,B,点运动到,C,点的过程中,,,由能量守恒得:,,,(4,分,),,解得:,Q=,mgR,(2,分,),,答案:,(1) (2)mgR,【,变式训练,】,如图所示,,,一轻弹簧的,,左端固定,,,右端与一小球相连,,,小球,,处于光滑水平面上,.,现对小球施加一,,个方向水平向右的恒力,F,,使小球从静止开始运动,,,则小球在向右运动的整个过程中,( ),,A.,小球和弹簧组成的系统机械能守恒,,B.,小球和弹簧组成的系统机械能逐渐增大,,C.,小球的动能逐渐增大,,D.,小球的动能先增大然后减小,【,解析,】,选,B,、,D.,小球在向右运动的整个过程中,,,力,F,做正功,,,由功能关系知小球和弹簧组成的系统机械能逐渐增大,,,选项,A,错误,,B,正确;弹力一直增大,,,当弹力等于,F,时,,,小球的速度最大,,,动能最大,,,当弹力大于,F,时,,,小球开始做减速运动,,,速度减小,,,动能减小,,,选项,C,错误,, D,正确,.,【,例证,4】(2011,·,长春模拟,),,如图所示,质量,m=1 kg,的小物,,块放在一质量为,M=4 kg,的足够,,长的木板右端,物块与木板间的动摩擦因数,μ=0.2,,木板与,,水平面间的摩擦不计,.,物块用劲度系数为,k=25 N/m,的弹簧拴,,住,弹簧的左端固定,(,与木板不粘连,).,开始时整个装置静,止,弹簧处于原长状态,.,现对木板施以,12 N,的水平向右的恒,,力,(,物块与木板间最大静摩擦力可认为等于滑动摩擦力,取,,g=10 m/s,2,).,已知弹簧的弹性势能,,,式中,x,为弹簧的,,伸长量或压缩量,.,求:,,(1),开始施力的瞬间小物块的加速度,;,,(2),物块达到的最大速度是多少,?,【,标准解答,】,(1),假设,m,、,M,相对静止,由牛顿第二定律,,,此时,m,受到的合外力,,F,合,=ma=2.4 N>F,f,=,μmg,=2 N,,,所以,m,、,M,相对滑动,.,,小物块的加速度为,,(2),设物块速度最大时,弹簧伸长,x,,则,kx,=,μmg,,,,所以,x=0.08 m,,由功能关系,,,,,所以,v,m,=0.4,m/s,.,,答案:,(1)2 m/s,2,(2)0.4,m/s,忽视绳子张紧瞬间的能量损失导致错误,,一质量为,m,的质点,系于长为,R,的轻绳的一端,绳的另一端固,,定在空间的,O,点,假定绳是不可伸长的、柔软且无弹性的,.,今,,把质点从,O,点的正上方离,O,点距离为 的点以水平速度,,抛出,如图所示,试求:当质点到达,O,点的正下,,方时,绳对质点的拉力为多大?,【,易错分析,】,在解答本题时易犯错误具体分析如下:,【,正确解答,】,质点的运动可分为三个过程:,,第一过程:质点做平抛运动,.,设绳,,即将伸直时,绳与竖直方向的夹角,,为,θ,,如图所示,.,,在水平方向,:x=v,0,t=,Rsinθ,,在竖直方向,:,,联立解得,:,第二过程:绳绷紧过程,.,绳绷紧时,,,绳刚好水平,如图所示,由于绳不,,可伸长,故绳绷直时,沿绳方向的,,速度,v,0,消失,质点仅有速度,v,⊥,,,,且,,第三过程:小球在竖直平面内做圆周运动,.,设质点到达,O,点,,正下方时的速度为,v′,,,,设此时绳对质点的拉力为,F,T,,则,,联立解得,:,,正确答案:,1.(2011,·,黄冈模拟,),质量为,m,的带正电的物体处于竖直向上的匀强电场中,已知带电物体所受电场力的大小为物体所受重力的 ,现将物体从距地面高,h,处以一定初速度竖直下抛,物体以 的加速度竖直下落到地面,(,空气阻力恒定,),,则在物体的下落过程中,( ),,A.,物体的重力势能减少 ,电势能减少,,B.,由物体与周围空气组成的系统的内能增加了,,C.,物体的动能增加,,D.,物体的机械能减少,【,解析,】,选,C.,由题意知,电场力 ;由牛顿第二定,,律得,mg-F,电,-F,f,=ma,,即空气阻力 ;下落过程中,重,,力做功,mgh,,电场力做负功,大小为,,,故重力势能减,,少,mgh,,电势能增加,,,,A,错;,E,内,=,F,f,·,h,=,,,B,错;,,物体所受合外力,F,合,=ma=,,故动能的增加量,ΔE,k,=F,合,·,h,,=,,,C,正确;机械能的减少量,ΔE=,F,f,h+F,电,h=,,,D,,错,.,2.(2011,·,福州模拟,),重物,m,系在上端固定的轻弹簧下端,,,用手托起重物,,,使弹簧处于竖直方向,,,弹簧的长度等于原长时,,,突然松手,,,重物下落的过程中,,,对于重物、弹簧和地球组成的系统来说,,,正确的是,(,弹簧始终在弹性限度内变化,)( ),,A.,重物的动能最大时,,,重力势能和弹性势能的总和最小,,B.,重物的重力势能最小时,,,动能最大,,C.,弹簧的弹性势能最大时,,,重物的动能最小,,D.,重物的重力势能最小时,,,弹簧的弹性势能最大,【,解析,】,选,A,、,C,、,D.,重物下落过程中,,,只发生动能、重力势能和弹性势能的相互转化,,,所以当动能最大时,,,重力势能和弹性势能的总和最小,,A,正确,;,当重物的重力势能最小时,,,重物应下落到最低点,,,其速度为零,,,动能最小,,,此时弹簧伸长量最大,,,弹性势能最大,,,故,B,错误,,C,、,D,正确,.,3.(2010,·,福建高考,),如图,(,甲,),所示,质量不计的弹簧竖立固定在水平面上,,t=0,时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复,.,通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力,F,随时间,t,变化的图象如图,(,乙,),所示,则,( ),A.t,1,时刻小球动能最大,,B.t,2,时刻小球动能最大,,C.t,2,~,t,3,这段时间内,小球的动能先增加后减少,,D.t,2,~,t,3,这段时间内,小球增加的动能等于弹簧减少的弹性势能,【,解析,】,选,C.,小球在未碰弹簧前先做自由落体运动,碰后先做加速度减小的加速运动直到加速度为零,即重力等于弹簧的弹力时速度最大,而后做加速度增大的减速运动,上升过程恰好与下降过程互逆,在整个过程中小球的动能、势能及弹簧的弹性势能总和不变,由,(,乙,),图可知,t,1,时刻小球开始接触弹簧,,t,2,时刻小球运动到最低点,动能最小,,t,3,时刻小球恰好离开弹簧上升,,t,2,~,t,3,这段时间内小球从最低点向上运动的过程中先加速到速度最大然后做减速运动,小球动能先增加后减少,弹簧减少的弹性势能转化为小球的动能和重力势能,故选,C.,4.(2011,·,西安模拟,),如图所示,,,倾角为,30,°,的光滑斜面的下端有一水平传送带,,,传送带正以,6,m/s,的速度运动,,,运动方向如图所示,.,一个质量为,2 kg,的物体,(,物体可以视为质点,),,从,h=3.2 m,高处由静止沿斜面下滑,,,物体经过,A,点时,,,不管是从斜面到传送带还是从传送带到斜面,,,都不计其动能损失,.,物体与传送带间的动摩擦因数为,0.5,,物体向左最多能滑到传送带左右两端,AB,的中点处,,,重力加速度,g=10 m/s,2,,,则,:,(1),物体由静止沿斜面下滑到斜面末端需要多长时间,?,,(2),传送带左右两端,AB,间的距离,l,至少为多少,?,,(3),上述过程中物体与传送带组成的系统产生的摩擦热为多少,?,,(4),物体随传送带向右运动,,,最后沿斜面上滑的最大高度,h′,为多少,?,【,解析,】,(1),对物体:,mgsinθ,=ma,,,可得,t=1.6 s.,,(2),由能的转化和守恒得,:,,解得:,l=12.8 m,,(3),物体与传送带间的相对位移,,而,,摩擦热,Q=,μmg,·,x,相,,,,以上三式联立可得,Q=160 J.,(4),物体随传送带向右匀加速运动,,,设当速度为,v,带,=6,m/s,时向,,右的位移为,x,,则 ,得,x=3.6 m< ,,,即物体在到达,A,点前速度与传送带相等,,,最后以,v,带,=6,m/s,的速,,度冲上斜面,,,由 得,h′=1.8 m.,,答案:,(1)1.6 s (2)12.8 m (3)160 J (4)1.8m,一、选择题,(,本题共,10,小题,每题,7,分,至少一个答案正确,,,选不全得,4,分,共,70,分,),,1.(2011,·,威海模拟,),一根长为,L,、质量为,m,的均匀链条放在光,,滑的水平桌面上,其长度的一半悬于桌边,若要将悬着的部,,分拉回桌面,至少需做功,( ),,A. B.,,C.mgL,D.,,【,解析,】,选,D.,悬于桌边的链条质量为 ,将其拉上桌面,,,重心升高 ,故至少做功为 ,,D,正确,.,2.,一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于,( ),,A.,物块动能的增加量,,B.,物块重力势能的减少量与物块克服摩擦力做的功之和,,C.,物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和,,D.,物块动能的增加量与物块克服摩擦力做的功之和,【,解析,】,选,D.,由动能定理得 , 故,,其中,W,G,为重力做的功,等于重力势能,,的减少量,,W,Ff,为克服摩擦力做的功,很显然只有,D,正确,.,3.(2011,·,广州模拟,),运动员跳伞将经历开伞前后的加速下降和减速下降两个过程,.,将人和伞看成一个系统,在这两个过程中,下列说法正确的是,( ),,A.,阻力对系统始终做负功,,B.,系统受到的合外力始终向下,,C.,重力做功使系统的重力势能增加,,D.,任意相等的时间内重力做的功相等,【,解析,】,选,A.,阻力的方向总与运动方向相反,故阻力总做负功,,A,正确;运动员加速下降时合外力向下,减速下降时合外力向上,,B,错误;重力做功使系统重力势能减少,,C,错误;由于做变速运动,任意相等时间内的下落高度,h,不相等,所以重力做功,W,=,mgh,不相等,,D,错误,.,4.,如图所示,长为,l,的轻质细绳悬挂,,一个质量为,m,的小球,其下方有一个,,倾角为,θ,的光滑斜面体,放在光滑水,,平面上,.,开始时小球刚好与斜面接触,,,现在用水平力,F,缓慢向左推动斜面体,直至细绳与斜面平行为止,对该过程中有关量的描述,正确的有,( ),,A.,小球受到的各个力均不做功,,B.,重力对小球做负功,斜面弹力对小球做正功,,C.,小球在该过程中机械能守恒,,D.,推力,F,做的总功是,mgl(1-cosθ),【,解析,】,选,B.,根据力做功的条件可知重力对小球做负功,斜面弹力对小球做正功,,A,错误,,B,正确;小球在该过程中机械能增加,,C,错误;推力,F,做的总功应等于小球重力势能的增量,mgl(1-sinθ),,,D,错误,.,5.,高台跳水是我国运动员的强项,,,在,2010,年广州亚运会上,,,我国体育健儿又一次包揽全部金牌,.,质量为,m,的跳水运动员进入水中后受到水的阻力而做减速运动,,,设水对他的阻力大小恒为,F,,那么他在水中减速下降高度为,h,的过程中,,,下列说法正确的是,(g,为当地的重力加速度,)( ),,A.,他的动能减少了,Fh,,B.,他的重力势能增加了,mgh,,C.,他的机械能减少了,(F-,mg)h,,D.,他的机械能减少了,Fh,【,解析,】,选,D.,运动员减速下降,h,的过程中,,,合外力做功大小为,(F-,mg)h,,,所以动能减少,(F-,mg)h,A,错误,;,运动员下降,h,,重力势能减少,mgh,B,错误,;,机械能的减少量等于除重力之外其他力做的功,,,即为,Fh,,,故,C,错误,,D,正确,.,6.(2011,·,盐城模拟,),如图所示,长,,为,L,的小车置于光滑的水平面上,,,小车前端放一小物块,用大小为,F,的,,水平力将小车向右拉动一段距离,s,,,物块刚好滑到小车的左端,.,物块与小车间的摩擦力为,F,f,,,在此过程中,( ),,A.,系统产生的内能为,F,f,L,,B.,系统增加的机械能为,Fs,,C.,物块增加的动能为,F,f,L,,D.,小车增加的动能为,Fs-,F,f,L,【,解析,】,选,A.,系统运动过程的示,,意图如图所示,系统产生的内能,,应为滑动摩擦力乘以物体间的相,,对位移,即,F,f,L,,,故,A,正确,,C,错误;,,根据功能关系,外力对系统做的,,功应等于系统产生的内能与机械能增量之和,即,Fs=ΔE,总,+,F,f,L,,故,B,错误,;,根据动能定理,合外力对小车做的功等于小车动能的增量,即,Fs-,F,f,s,=,ΔE,k,车,,,故,D,错误,.,,【,方法技巧,】,摩擦力做功的误区分析,,常见误区分析:,(1),误区之一:计算摩擦力做功时,误把小车的长度当成物体对地位移,.,,解决办法:规范作出物体运动过程的分析示意图,标出物体的受力情况以及运动位移,;,同时切记力对物体做的功等于该力与物体对地位移的乘积,.,(2),误区之二:误把外力做的功当做系统机械能的增量,.,,解决办法,:,认真分析系统内各种能量的变化,不能遗漏对任何一种能量改变的分析;同时对能量守恒定律和功能关系要深刻理解,如果系统内除机械能改变之外,无其他能量变化,如内能的增加,则外力,(,除重力之外,),做的功就等于系统机械能的增量,.,如果有系统的内力做功情况且之和不为零,系统内有其他形式的能的转化,,,用能量守恒定律求解,.,7.,如图所示,,,下端固定在地面上的竖,,直轻弹簧,,,从它的正上方高,H,处有一物,,块自由落下,,,落到弹簧上后将弹簧压,,缩,.,如果分别从,H,1,、,H,2,(H,1,>H,2,),高处,,释放物块,,,物块落到弹簧上将弹簧压,,缩的过程中获得的最大动能分别是,E,k1,和,E,k2,,,在具有最大动能时刻的重力势能分别是,E,p1,和,E,p2,(,以地面为参照系,),,那么有,,( ),,A.E,k1,=E,k2,,E,p1,=E,p2,B.E,k1,>E,k2,,E,p1,>E,p2,,C.E,k1,>E,k2,,E,p1,=E,p2,D.E,k1,>E,k2,,E,p1,v,0,,由机械能守恒,. (2,分,),,设滑块在传送带上做匀减速运动的加速度大小为,a,,,,由牛顿第二定律:,μmg,=,ma. (1,分,),,由运动学公式,v,2,-,v,0,2,=,2aL,,,,解得,,(2,分,),(3),设滑块在传送带上运动的时间为,t,,则,t,时间内传送带的位移,x,=,v,0,t,,,v,0,=,v,-,at (2,分,),,滑块相对传送带滑动的位移,Δx,=,L,-,x (1,分,),,因相对滑动生成的热量,Q,=,μmg,·,Δx,(2,分,),,解得,,(3,分,),,答案:,(1),见解析,(2),,(3),Thank you!,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.