
陕西师范大学电动力学详细知识梳理.doc
23页第一章第一章 电磁现象的普遍规律电磁现象的普遍规律一、主要内容一、主要内容:电磁场可用两个矢量—电场强度 和磁感应强度 来完全描写,这一章的主要任务是:在实验定律的基础上找出 , 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程完成由普通物理到理论物理的自然过渡二、知二、知 识识 体体 系:系:三、内容提要:三、内容提要:1 1.电磁场的基本实验定律:.电磁场的基本实验定律:((1 1)库仑定律:)库仑定律:对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即:((2 2)毕奥)毕奥————萨伐尔定律萨伐尔定律(电流决定磁场的实验定律)((3 3)电磁感应定律)电磁感应定律①生电场为有旋场(又称漩涡场),与静电场本质不同②磁场与它激发的电场间关系是电磁感应定律的微分形式4 4)电荷守恒的实验定律)电荷守恒的实验定律, ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。
② 若空间各点与 无关,则为稳恒电流,电流线闭合稳恒电流是无源的(流线闭合) ,,均与 无关,它产生的场也与 无关2 2、电磁场的普遍规律、电磁场的普遍规律——麦克斯韦方程麦克斯韦方程其中:1 是介质中普适的电磁场基本方程,适用于任意介质2 当,过渡到真空情况:3 当时,回到静场情况:4 有 12 个未知量,6 个独立方程,求解时必须给出与,与的关系介质中:3 3、介质中的电磁性质方程、介质中的电磁性质方程若为非铁磁介质1、电磁场较弱时:均呈线性关系向同性均匀介质:,, 2、导体中的欧姆定律在有电源时,电源内部,为非静电力的等效场4 4.洛伦兹力公式.洛伦兹力公式考虑电荷连续分布, 单位体积受的力:洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确说明:①②5.5.电磁场的边值关系电磁场的边值关系其它物理量的边值关系:恒定电流: 6 6、电磁场的能量和能流、电磁场的能量和能流能量密度:能量密度: 能流密度:能流密度: 三.重点与难点三.重点与难点1.概念:电场强度、磁感应强度、电流密度、极化强度、磁化强度、能流密度2.麦克斯韦方程、电荷守恒定律、边值关系、极化强度与极化电荷的关系、磁化强度与磁化电流的关系、应用它们进行计算和证明。
3.电磁场的能量及其传输第二章第二章 静静 电电 场场一、主要内容一、主要内容:应用电磁场基本理论解决最简单的问题:电荷静止或电荷分布不随时间变化,产生的场不随时间变化的静电场问题本章研究的主要问题是:在给定自由电荷分布及介质和导体分布的情况下如何求解静电场由于静电场的基本方程是矢量方程,求解很难,并不直接求解静电场的场强,而是通过静电场的标势来求解首先根据静电场满足的麦克斯韦方程,引入标势,讨论其满足的微分方程和边值关系在后面几节中陆续研究求解:分离变量法、镜像法和格林函数法最后讨论局部范围内的电荷分布所激发的电势在远处的展开式二、知二、知 识识 体体 系:系:1.1.静电场的微分方程:静电场的微分方程:边值关系:静电场的能量:2.2.静电边值问题的构成:静电边值问题的构成:3 3.静电边值问题的基本解法:.静电边值问题的基本解法:(1)镜像法(2)分离变量法条件:电势满足拉普拉斯方程:(3)电多极矩(4) 格林函数法三、内容提要:三、内容提要:1 1.静电场的电势.静电场的电势引入标量函数即静电势后空间两点电势差:参考点:(1)电荷分布在有限区域,通常选无穷远为电势参考点 (2)电荷分布在无限区域不能选无穷远点作参考点,否则积分将无穷大。
连续分布电荷:无穷远处为参考点2.2.电势满足的微分方程电势满足的微分方程泊松方程: 其中仅为自由电荷分布,适用于均匀各向同性线性介质对的区域:电势满足拉普拉斯方程:3.3.边值关系边值关系①.①.两介质界面上边值关系 ②.②.导体与介质界面上的边值关系③.③.导体与导体界面上的边值关系其中是导体的电导率4.4.静电场的能量静电场的能量用电势表示: 注意:①不是静电场的能量密度; 是自由电荷密度,而则是空间所有电荷的电势,②只适用于静电场5.5.唯一性定理:唯一性定理:①①均匀单一介质当区域 V 内自由电荷分布已知,满足,若 V 边界上已知,或 V 边界上已知,则 V 内场(静电场)唯一确定② 均匀单一介质中有导体当区域 V 内有导体存在,给定导体之外的电荷分布,当 1或已知,每个导体电势或带电量,则内电场唯一确定四、四、. .静电边值问题的基本解法:静电边值问题的基本解法:1.1.镜像法:镜像法: 理论依据:唯一性定理,采用试探解的方法镜像法:镜像法:用假想点电荷来等效地代替导体或介质边界面上的未知面电荷分布,然后用空间点电荷和等效点电荷迭加给出空间电势分布。
条件:条件:①所求区域内只能有少许几个点电荷(只有点电荷产生的感应电荷才能用点电荷代替或是简单的连续分布②导体边界面形状规则,具有一定对称性③给定边界条件要求:要求:①做替代时,不能改变原有电荷分布(即自由点电荷位置、Q 大小不能变)泊松方程不能改变所以假想电荷必须放在所求区域之外②不能改变原有边界条件,通过边界条件确定假想电荷的大小和位置③一旦用了假想等效电荷,不能再考虑边界面上的电荷分布④坐标系根据边界形状来选择2.2.分离变量法:分离变量法:条件条件:电势满足拉普拉斯方程:①空间处处,自由电荷只分布在某些介质(如导体)表面上,将这些表面视为区域边界,可以用拉普拉斯方程②在所求区域介质中有自由电荷分布,若这个自由电荷分布在真空中,产生的势为已知,则区域V 中电势可表示为两部分的和 不满足,但表面上的电荷产生的电势使满足,仍可用拉普拉斯方程求解注意:注意:边值关系还要用而不能用拉普拉斯方程的通解:轴对称通解: 为勒让德函数, …球对称球对称通解:若与均无关,即具有球对称性,则通解为:解题步骤解题步骤①选择坐标系和电势参考点坐标系选择主要根据区域中分界面形状参考点主要根据电荷分布是有限还是无限②分析对称性,分区域写出拉普拉斯方程在所选坐标系中的通解③根据具体条件确定常数外边界条件:外边界条件: 电荷分布有限 导体边界可视为外边界,给定,或给定总电荷 Q,或给定(接地 )一般在均匀场中,:(直角坐标或柱坐标)内部边值关系:内部边值关系:介质分界面上(表面无自由电荷)3.3.电多极矩电多极矩讨论电荷分布在小区域内,而场点又距电荷分布区较远,即l l< 本章难点本章难点:镜象法、分离变量法(柱坐标)、电多极矩第三章第三章 稳恒电流的磁场稳恒电流的磁场一、主要内容一、主要内容:在给定自由电流分布及介质分布的情况下如何求解稳恒磁场由于稳恒磁场的基本方程是矢量方程,求解很难,并不直接求解的稳恒磁场磁感应强度,一般是通过磁场的矢势来求解在一定条件下,可以引入磁标势及磁标势满足的方程来求解我们先引入静磁场的矢势,导出矢势满足的微分方程,然后再讨论磁标势及其微分方程,最后讨论磁多极展开二、知识体系:二、知识体系:1 1.矢势法:.矢势法:基本方程:边值关系:静磁场的能量:① 能量分布在磁场内,不仅仅是分布在电流区.②不是能量密度2 2.磁标势法.磁标势法引入磁标势的条件条件:求解区域内作任意的闭合回路 L,闭合回路 L 内都无电流穿过,即,即引入区域为无自由电流分布的单连通域基本方程: 边值关系:解法:当时,,用分离变量法求解,解法与第二章相同.3 3.磁矢势多极展开:.磁矢势多极展开:本章重点:本章重点:1、矢势的引入和它满足的微分方程、静磁场的能量2、引入磁标势的条件,磁标势满足的方程与静电势方程的比较3、利用磁标势解决具体问题本章难点:本章难点:利用磁标势解决具体问题第四章第四章 电磁波的传播电磁波的传播电磁波:电磁波:随时间变化的运动电荷和电流辐射电磁场,电磁场在空间互相激发,在空间以波动的形式存在,就是电磁波。 一、主要内容:一、主要内容:研究电磁场在空间存在一定介质和导体的情况下的波动情况;在真空与介质,介质与介质,介质与导体的分界面上,电磁波会产生反射、折射、衍射和衰减等,这些本质上是边值问题电磁波在空间传播有各种各样的形式,最简单、最基本的波型是平面电磁波二、知识体系:二、知识体系:1 1.自由空间(介质):.自由空间(介质):指,的无限大充满均匀空间.-定态波亥姆霍兹方程基本解:,性质:(1)与的关系: ,构成右手螺旋关系(2)与同位相;(3),振幅比为波速(因为相互垂直,) 4)平面电磁波的能量和能流能量密度:,电场能等于磁场能,能量密度平均值为能流密度: (为方向上的单位矢量)平均值:2.2.良导体:良导体:,,基本解: , 其中3.3.电磁波在界面反射和折射电磁波在界面反射和折射4.4.谐振腔谐振腔定态波边值问题: 在求解中主要用到 解为: 两个独立常数由激励谐振的信号强度来确定谐振频率:谐振频率:(1)给定一组,解代表一种谐振波型(本征振荡, 在腔内可能存在多种谐振波型的迭加) ;只有当激励信号频率时,谐振腔才处于谐振态。 2)不存在中两个为零的波型,若,则3)对每一组值,有两个独立偏振波型,这是因为对于确定的可以分解到任意两个方向4)最低频率的谐振波型假定,则最低谐振频率为该波型为(1,1,0)型,,所以 ,,,为横电磁波但是在一般情况下,5.5.矩形波导管矩形波导管矩形波导管由四个壁构成的金属管,四个面为一般情况下让电磁波沿轴传播,对理想导体:,理想导体边界条件理想导体边界条件:满足方程: , 其解: 其中,的解由确定截止频率截止频率:最低截止频率为: () ,() ;最高截止波长为: ,一般把波长的波,称为超短波即微波本章重点:本章重点:1、电磁场的波动方程、亥姆霍兹方程和平面电磁波2、反射和折射定律的导出、振幅的位相关系,偏振3、导体内的电磁波特性、良导体条件、趋肤效应4、谐振腔和波导管中电磁波的运动形式本章难点:本章难点:1、振幅、位相关系2、导体内电磁波的运动第五章第五章 电磁波的辐射电磁波的辐射发布时间:【2011-04-25】阅读:218 次 一、主要内容:一、主要内容:本章讨论高频交变电流辐射的电磁场的规律二、知识体系:二、知识体系:其解:设电荷、电流分布为随时间做正弦或余弦变化,即:将此式代入推迟势的公式后得到():令 则: ,如果讨论的区域有关系式:。 三、电偶极辐射:三、电偶极辐射:当时,,上式可以仅取积分中的第一项,有:,此式代表的是偶极辐射由此我们得到在条件下偶极辐射的磁感应强度:利用得到偶极辐射的磁感应强度:若选球坐标,让沿轴,则:(1)电场沿经线振荡,磁场沿纬线振荡,传播方向、电场方向、磁场方向相互正交构成右手螺旋关系;(2)电场、磁场正比于,因此它是空间传播的球面波,且为横电磁波,在时可以近似为平面波;(3)要注意如果()。












