
高中物理_选修33知识点.pdf
7页共 7 页第页选修 3-3 模块-1-选修 33 考点汇编一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同2316.0210ANmol(3)对微观量的估算分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体).球体模型直径d36V0.立方体模型边长d3V0.利用阿伏伽德罗常数联系宏观量与微观量微观量:分子体积 V0、分子直径 d、分子质量 m0.宏观量:物体的体积 V、摩尔体积 Vm,物体的质量 m、摩尔质量 M、物体的密度.a.分子质量:AmolNMm0AmolNVb.分子体积:AmolNVv0MNA(气体分子除外)c.分子数量:AAAAmolmolmolmolMvMvnNNNNMMVV特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的分子的体积V0VmNA,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间2、对于气体分子,d3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。
可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察 到的布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的颗粒越小,各个方向的撞击越不均匀布朗运动 间接 地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动扩散现象与布朗运动的区别:扩散现象是分子运动的结果或扩散现象本身就是分子运动;而布朗运动只是反应了分子运动,布朗运动是小颗粒了运动而不是液体分子运动也不是小颗粒分子的运动3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 7 页 -共 7 页第页选修 3-3 模块-2-3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大但总是斥力变化得较快3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
0r位置叫做平衡位置,0r的数量级为1010m理解+记忆:(1)当0rr时,引F斥F,F0;(2)当0rr时,引F和斥F都随距离的减小而增大,但引F斥F,F 表现为斥力;(3)当0rr时,引F和斥F都随距离的增大而减小,但引F斥F,F 表现为引力;分子间的距离从0r开始增加,则分子力先增大后减小4)当010rr(m)时,引F和斥F都已经十分微弱,可以认为分子间没有相互作用力(F0)4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志热力学温度与摄氏温度的关系:273.15TtKT=0K 或 t=273.150C 是温度的极限,只能无限接近,不可能达到5、内能分子动能:与热现象有关的不单个分子的动能,而是大量分子热运动的平均动能温度是物体大量分子热运动平均动能的标志如相同温度的下氢气分子与氧气分子具有相等的平均动能,但它们的平均速率不同分子势能分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映0rr时分子势能最小)当0rr时,分子力为引力,当r 增大时,分子力做负功,分子势能增加当0rr时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加当rr0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷远时分子势能为零物体的内能物体中 所有分子 热运动的动能和分子势能的总和,叫做物体的内能。
一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的理想气体的内能只取决于温度)改变内能的方式做功与热传递都使物体的内能改变两者在改变内能上是等效的特别提醒:名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 7 页 -共 7 页第页选修 3-3 模块-3-(1)物体的体积越大,分子势能不一定就越大,如0 的水结成0 的冰后体积变大,但分子势能却减小了(2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体内能只与温度有关(3)内能都是对宏观物体而言的,不存在某个分子的内能的说法由物体内部状态决定二、气体6、分子热运动速率的统计分布规律(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间(2)分子做无规则的运动,速率有大有小,且频繁地变化,大量分子的速率按“中间多,两头少”的规律分布(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变7、气体实验定律玻意耳定律:pVC(C 为常量)等温变化微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。
适用条件:压强不太大,温度不太低图象表达:1pV在 PV 图中图像所围的面积表示气体所做的功查理定律:pCT(C 为常量)等容变化微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能增大,气体的压强就增大适用条件:温度不太低,压强不太大图象表达:PTTTTT2T1 图 1 名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 7 页 -共 7 页第页选修 3-3 模块-4-盖吕萨克定律:VCT(C 为常量)等压变化微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变适用条件:压强不太大,温度不太低图象表达:VT8、理想气体宏观上:严格遵守三个实验定律的气体,实际气体 在常温常压下(压强不太大、温度不太低)可以看成理想气体微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能)理想气体 状态 方程:pVCT,可 包含气体的三个实验定律:几个重要的推论(1)查理定律的推论:pp1T1 T(2)盖吕萨克定律的推论:VV1T1 T(3)理想气体状态方程的推论:p0V0T0p1V1T1p2V2T2应用状态方程或实验定律解题的一般步骤(1)明确研究对象,即某一定质量的理想气体;(2)确定气体在始末状态的参量p1、V1、T1及 p2、V2、T2;P1P2P1P2-273图 3 V1V2-273图 2 名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 7 页 -共 7 页第页选修 3-3 模块-5-(3)由状态方程或实验定律列式求解;(4)讨论结果的合理性在确定气体压强时还常常以封闭气体的水银柱、活塞或气缸为研究对象。
9、气体压强的微观解释大量分子频繁的撞击器壁的结果影响气体压强的因素:气体的平均分子动能(宏观上即:温度)分子的密集程度即单位体积内的分子数(宏观上即:体积)平均每次的撞击力与分子的平均速率有关(温度);单位时间单位面积上撞击次数则与分子数密度、分子运动的激烈程度有关(即与体积、温度有关)三、物态和物态变化10、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性判断物质是晶体还是非晶体的主要依据是有无固定的熔点晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英玻璃)11、单晶体多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点12、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。
13、表面张力表面层的分子比液体内部稀疏,分子间距比内部大,表面层的分子表现为引力如露珠(1)作用:液体的表面张力使液面具有_收缩 _的趋势(2)方向:表面张力跟液面相切,跟这部分液面的分界线_垂直 _(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大14、液晶分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的15、饱和汽湿度(1)饱和汽:与液体处于动态平衡的蒸汽(2)未饱和汽:没有达到饱和状态的蒸汽(3)饱和汽压定义:饱和汽所具有的压强特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关(4)湿度定义:空气的干湿程度名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 7 页 -共 7 页第页选修 3-3 模块-6-描述湿度的物理量a绝对湿度:空气中所含水蒸气的压强b相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比c相对湿度公式相对湿度水蒸气的实际压强同温度水的饱和汽压(Bpps 100%)影响人们对干爽与潮湿感受的因素是空气的相对湿度,而不相对湿度。
15、改变系统内能的两种方式:做功和热传递热传递有三种不同的方式:热传导、热对流和热辐射这两种方式改变系统的内能是等效的区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移16、热力学第一定律表达式uWQ几种特殊情况(1)若过程是绝热的,则 Q0,W U,外界对物体做的功等于物体内能的增加.(2)若过程中不做功,即W0,则 Q U,物体吸收的热量等于物体内能的增加(3)若过程的始末状态物体的内能不变,即U0,则 WQ0 或 W Q,外界对物体做的功等于物体放出的热量17、热力学第二定律(1)常见的两种表述克劳修斯表述(按热传递的方向性来表述):热量不能自发地从_低温 _物体传到 _高温 _物体开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从 _单一热源 _吸收热量,使之完全变成功,而不产生其他影响a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响如吸热、放热、做功等即使在没有任何漏气、摩擦、不必要的散热等损失,热机的效率也不可会是100%(2)热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性(3)热力学过程方向性实例(1)高温物体热量 Q能自发传给热量 Q不能自发传给低温物体(2)功能自发地完全转化为不能自发地且不能完全转化为热(3)气体体积V1能自发膨胀到不能自发收缩到气体体积 V2(较大)(4)不同气体A和B 能自发混合成不能自发分离成混合气体AB 特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温符号WQu+外界对系统做功系统从外界吸热系统内能增加-系统对外界做。












