
数列极限四则运算法则的证明(共2页).docx
2页精选优质文档-----倾情为你奉上数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(AnBn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于∀ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(CAn)=CA.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得:|CAn-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|CAn-CA|<Cε.由极限定义可知,lim(CAn)=CA.(若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn)(法则1)=limAn+(-1)limBn(引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(AnBn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|AnBn|=|An-0||Bn-0|<εε=ε.由于ε是任意正数,所以ε也是任意正数.即:对任意正数ε,存在正整数N,使n>N时恒有|AnBn-0|<ε.由极限定义可知,lim(AnBn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A)(法则1)=A-A(引理2)=0.同理limbn=0.∴lim(AnBn)=lim[(an+A)(bn+B)]=lim(anbn+Ban+Abn+AB)=lim(anbn)+lim(Ban)+lim(Abn)+limAB(法则1)=0+Bliman+Alimbn+limAB(引理3、引理2)=B0+A0+AB(引理1)=AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5:若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),∃正整数N1和正实数ε0,使得对∀正整数n>N1,有|Bn|≥ε0.由引理5,又∃正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对∀ε>0, ∃正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAnlim(An的k-1次方)(法则3)....(往复k-1次)=(limAn)的k次方=A的k次方.专心---专注---专业。
