
人教版初一数学下册期末试卷填空题汇编精选素养达标检测卷及解析.doc
52页一、填空题1.对两数a,b规定一种新运算:,例如:,若不论取何值时,总有,则=______.答案:【分析】将,转化为2ax=x来解答.【详解】解:∵可转化为:2ax=x,即,∵不论x取何值,都成立,∴,解得:,故答案为:.【点睛】本题考查实数的运算,正确理解题目中的新运算是解析:【分析】将,转化为2ax=x来解答.【详解】解:∵可转化为:2ax=x,即,∵不论x取何值,都成立,∴,解得:,故答案为:.【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.2.一副直角三角板叠放如图①,.现将含角的三角板固定不动,把含角的三角板(其中)绕顶点A顺时针旋转角.(1)如图②,当______度时,边和边所在的直线互相垂直;(2)当旋转角在的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的______.答案:60°或105°或135° 【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(解析:60°或105°或135° 【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(1)在△ABC中,AC⊥BC,AE与AC重合,则AE⊥BC,α=∠DEA-∠BAC=45°-30°=15°,∴当α=15°时,BC⊥AE.故答案为15;(2)当BC∥AD时,∠C=∠CAD=90°,∴α=∠BAD=90°-30°=60°;如图,当AC∥DE时,∠E=∠CAE=90°,则α=∠BAD=45°+60°=105°,此时∠BAE=90°-30°=60°=∠B,则AE∥BC;如图,当AB∥DE时,∠E=∠BAE=90°,∴α=∠BAD=45°+90°=135°;综上:符合条件的α为60°或105°或135°,故答案为:(1)15;(2)60°或105°或135°.【点睛】本题考查了平行线的性质,三角板的角度计算,正确确定△ABC旋转的过程中可以依次出现几次平行的情况是关键.3.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.答案:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,,∵2021=505×4+1∴的横坐标为2×505=1010,纵坐标为1即故答案为:【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.4.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________.答案:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.5.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An,则A2021的坐标是___________.答案:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.6.如图,在平面直角坐标系中,一动点从原点出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点…那么点的坐标为________________________.答案:【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点的坐标.【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动、、、解析:【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点的坐标.【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动、、、、、 、… ∴坐标变化的规律:每移动4次,它的纵坐标都为1,而横坐标向右移动了2个单位长度,也就是移动次数的一半;∴2017÷4=504…1 ∴纵坐标是的纵坐标1;∴横坐标是0+2×504=1008,∴点的坐标为(1008,1) .故答案为:.【点睛】本题考查点坐标规律探索、学生的数形结合和归纳能力,仔细观察图象,找到点的坐标的变化规律是解答的关键.7.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________答案:5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.8.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.答案:20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的规律为:分子为,分母为归纳类推得:第n个等式为(n为正整数)当时,这个等式为,即故答案为:.【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.9.按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________.答案:;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,,,,,所以第n个数的绝对值是,所以第个数是,第n个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,,,,,所以第n个数的绝对值是,所以第个数是,第n个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.10.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.例如:(-3)☆2= = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.答案:8【解析】解:当a>b时,a☆b= =a,a最大为8;当a<b时,a☆b==b,b最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8【解析】解:当a>b时,a☆b= =a,a最大为8;当a<b时,a☆b==b,b最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.观察等式:,,,,……猜想______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n个奇数的和:1+3+5+7+…+(2n-1)=n2; ∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.12.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,。












