
2022年第二课时-三角函数倍角-辅助角公式.docx
7页和,辅 ,倍角公式一,和差公式 :1, sin〔 〕 sin cos cos sin . sin〔 〕 sin cos cos sin .cos〔 〕 cos cos sin sin . cos〔 〕 cos cos +sin sin .可编辑资料 -- -- -- 欢迎下载tan〔 〕tan tan1 tan tan. tan〔 〕tan tan1 tan tan可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载二,帮忙角公式 :asin x bcosx a2b2 sin〔x 〕 ,可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载其中:tanb ,sinb ,cos a可编辑资料 -- -- -- 欢迎下载a a 2 b2 a2 b 2证明过程:三,二倍角公式:1,二倍角: 2,降幂可编辑资料 -- -- -- 欢迎下载sin 2 2sin cos .sin cos 1 sin 22可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载cos 2 cos2sin2cos2 sin2 cos2可编辑资料 -- -- -- 欢迎下载tan 22cos 2 11 2sin 22 tan1 tan2cos2 sin1 cos2221 cos2 2可编辑资料 -- -- -- 欢迎下载例题 4:化简求值之基础训练:可编辑资料 -- -- -- 欢迎下载(1) sin 43ocos13ocos 43ocos77 o可编辑资料 -- -- -- 欢迎下载(2) cos32 o cos77 o sin148 o cos13o可编辑资料 -- -- -- 欢迎下载(3) sin〔 x y〕sin〔x y〕 cos〔x y〕cos〔y x〕可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(4) 如cos3 ,sin 5 , 〔 , 〕, 〔 3,2 〕,就 sin〔 〕可编辑资料 -- -- -- 欢迎下载5 13 2 2可编辑资料 -- -- -- 欢迎下载(5) 已知sin3 , 〔 35 2, 2 〕 ,就 cos〔 〕 4可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(6) tan17 otan 28otan17 otan 28o可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(7) sin sin 13 ,cos cos 1 ,就cos〔 〕可编辑资料 -- -- -- 欢迎下载2 2例题 5:化简求值之升华训练可编辑资料 -- -- -- 欢迎下载(1) 已知cos〔 〕 1 ,就cos sin的值为可编辑资料 -- -- -- 欢迎下载3 8可编辑资料 -- -- -- 欢迎下载(2) tan〔 〕2 , tan〔 〕 1 ,就tan〔 〕可编辑资料 -- -- -- 欢迎下载5 4 4 4可编辑资料 -- -- -- 欢迎下载(3) sin3 〔 〕, tan〔 〕 1 ,就tan〔 2 〕可编辑资料 -- -- -- 欢迎下载5 2 2可编辑资料 -- -- -- 欢迎下载(4) cos〔 〕12 ,cos〔 〕12 ,且〔 , 〕, 〔 3,2 〕, 就 =可编辑资料 -- -- -- 欢迎下载13 13 2 2可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(5) 已知tan〔 〕1, tan1, 求 tan〔2 〕可编辑资料 -- -- -- 欢迎下载2 7例 6:化简求值之综合应用:可编辑资料 -- -- -- 欢迎下载(1) y2sinx〔sin xcos x〕可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(2) y〔sin xcos x〕22cos 2 x可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(3) ycos4 x2sinx cos xsin4 x可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(4) ysin〔32 x〕 cos〔2x 〕 6可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(5) ysin〔6x〕 sin〔 x〕 cos x6可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载1. 已知函数f 〔 x〕辅 助 角 公 式 专 项 训 练3 sin x 1 cos x .可编辑资料 -- -- -- 欢迎下载4 4可编辑资料 -- -- -- 欢迎下载(1) 如cos x5 , x13, ,求2f 〔x〕 的值.可编辑资料 -- -- -- 欢迎下载(2) 将函数 f 〔 x〕 的图像向右平移 m 个单位,使平移后的图像关于原点对称,如0 m ,求 m的值.可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载2. 已知函数f 〔x〕1 sin 2 x sin cos2 x cos 1 sin〔 〕〔0 〕 ,其图像过点可编辑资料 -- -- -- 欢迎下载1〔 , 〕 .6 22 2 2可编辑资料 -- -- -- 欢迎下载(1) 求的 值.可编辑资料 -- -- -- 欢迎下载(2) 将y f 〔x〕的图像上各点的横坐标缩短到原先的 12,纵坐标不变,得到函数可编辑资料 -- -- -- 欢迎下载y g〔 x〕 的图像,求函数y g〔x〕 在区间 0, 上的最值.4可编辑资料 -- -- -- 欢迎下载3. 已知函数f 〔 x〕 2cosx sin〔 x〕 3 .可编辑资料 -- -- -- 欢迎下载(1) 求函数(2) 求函数3 2f 〔 x〕 的最小正周期及取得最大值时 x 的取值集合.f 〔 x〕 图像的对称轴方程.可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载4. 已知函数f 〔 x〕 2 a cos2 x b sinxcos x3 ,且f 〔0〕3 1, f 〔 〕 .可编辑资料 -- -- -- 欢迎下载(1) 求f 〔x〕 的单调递减区间.2 2 4 2可编辑资料 -- -- -- 欢迎下载(2) 函数 f 〔 x〕 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?可编辑资料 -- -- -- 欢迎下载5. 设f 〔x〕 cos〔x2 2 x〕 2cos , x R .可编辑资料 -- -- -- 欢迎下载3 2可编辑资料 -- -- -- 欢迎下载(1)求f 〔x〕 的值域.( 2)求f 〔 x〕 的对称中心.可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载6. 已知f 〔 x〕 cos〔2 x〕 2sin〔 x3〕sin〔 x 〕 .4 4可编辑资料 -- -- -- 欢迎下载(1) 求函数 f 〔 x〕 的最小正周期和图像的对称轴方程.可编辑资料 -- -- -- 欢迎下载(2) 求函数f 〔 x〕 在区间, 上的值域.12 2可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载7. 已知函数f 〔 x〕 cos〔x〕cos〔x〕, g〔x〕1 sin 2 x 1 .可编辑资料 -- -- -- 欢迎下载(1) 求3 3 2 4f 〔x〕 的最小正周期.可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载(2) 求函数h〔 x〕f 〔x〕g〔 x〕 的最大值,并求使h〔 x〕 取得最大值的 x 的集合.可编辑资料 -- -- -- 欢迎下载可编辑资料 -- -- -- 欢迎下载8. 设f 〔x〕 sin〔 x4〕 cos2 x 6 81 ,如函数y g 〔x〕 与y f 〔 x〕的图像关于直线可编辑资料 -- -- -- 欢迎下载x=1 对称,求当 x0。












