
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx
15页北师大版八年级数学下册第四章因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式正确的是( )A. B.C. D.2、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c3、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数4、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)5、把多项式分解因式,下列结果正确的是( )A. B.C. D.6、若一个三角形的三边长为a,b,c,且满足a2-2ab+b2+ac-bc =0,则这个三角形是( )A.直角三角形 B.等边三角形C.等腰三角形 D.等腰直角三角形7、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学8、下列各式由左边到右边的变形中,是因式分解的为( )A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x9、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)10、下列各式由左到右的变形中,属于分解因式的是( )A.a(m+n)=am+anB.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:-x+xy-y=________.2、在实数范围内分解因式:a2﹣3b2=_____.3、因式分解:______.4、把多项式分解因式的结果是______________.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.2、分解因式:(1);(2).3、将下列多项式分解因式:(1)(2)4、(Ⅰ)先化简,再求值:,其中,;(Ⅱ)分解因式:① ;② .5、把下列各式因式分解:(1) (2)-参考答案-一、单选题1、C【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.2、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,,,∴或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.3、A【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.4、B【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.5、D【分析】利用公式即可得答案.【详解】解:故选:D.【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式.6、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a,b,c之间的关系判断即可.【详解】解:a2-2ab+b2+ac-bc =0,,,∵∴,即,故选:C.【点睛】本题考查了因式分解的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系.7、C【分析】利用平方差公式,将多项式进行因式分解,即可求解.【详解】解:∵、、、依次对应的字为:科、爱、我、理,∴其结果呈现的密码信息可能是我爱理科.故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.8、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.【详解】解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.故选B.【点睛】本题考查因式分解,掌握因式分解的定义是解题关键.9、D【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.10、C【分析】把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.【详解】解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;B、,等式右边不是几个整式乘积的形式,不符合题意;C、符合因式分解定义,该选项符合题意;D、,等式右边不是几个整式乘积的形式,不符合题意.故选:C【点睛】本题考查因式分解的定义,牢记定义内容是解题的关键.二、填空题1、【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.2、(a+)(a﹣)a﹣)(a+)【分析】根据平方差公式因式分解,运用2次,注意分解要彻底【详解】a2﹣3b2=a2﹣()2=(a+)(a﹣).【点睛】本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.3、【分析】先提取公因式,再利用平方差公式计算即可得出答案.【详解】解:.【点睛】本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤.4、.【分析】直接提取公因式3x,再利用平方差公式分解因式即可.【详解】解:==.故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.5、【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.三、解答题1、(1)C;(2)否,;(3)【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可.【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,∴分解分式的结果为:,故答案为:否,;(3)设 ∴ .【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.2、(1);(2)【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解.【详解】解:(1)原式.(2)原式.【点睛】本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.3、(1)-5x(x-5);(2)xy(2x-y)2【分析】(1)提取公因式即可因式分解;(2)先提取公因式,进而根据完全平方公式进行因式分解即可【详解】解:(1)(2)【点睛】本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.4、(Ⅰ),;(Ⅱ)①;②【分析】(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.【详解】解:(Ⅰ)原式当、时原式.(Ⅱ)① . ② .【点睛】本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.5、(1);(2)【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可。












