
河南省各地2023-2024学年高一数学第二学期期末复习检测模拟试题含解析.doc
16页河南省各地2023-2024学年高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则( )A.1 B. C. D.-12.已知函数的最小正周期为,若,则的最小值为( )A. B. C. D.3.直线的倾斜角为( )A. B. C. D.4.在中,分别为的对边,如果成等差数列,,的面积为,那么( )A. B. C. D.5.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员( )A.3人 B.4人 C.7人 D.12人6.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数( )A. B. C. D.7.在中,角,,所对的边为,,,且为锐角,若,,,则( )A. B. C. D.8.在中,已知,,则角的取值范围为( )A. B.C. D.9.设,表示两条直线,,表示两个平面,则下列命题正确的是( )A.若,,则 B.若,,则C.若,,则 D.若,,则10.若 ,则 三个数的大小关系是( )A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.=__________.12.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.13.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____14.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.15.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.16.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知关于的函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意的恒成立,求实数的最大值.18.已知函数.(I)比较,的大小.(II)求函数的最大值.19.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.20.如图所示,在直三棱柱中,,平面,D为AC的中点.(1)求证:平面;(2)求证:平面;(3)设E是上一点,试确定E的位置使平面平面BDE,并说明理由.21.爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:最高气温天数216362574(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵,∴,,故选D.2、A【解析】由正弦型函数的最小正周期可求得,得到函数解析式,从而确定函数的最大值和最小值;根据可知和必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得,;从而可知时取最小值.【详解】由最小正周期为可得: , 和分别为的最大值点和最小值点设为最大值点,为最小值点 , 当时,本题正确选项:【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定和为最值点,从而利用整体对应的方式求得结果.3、D【解析】求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.4、B【解析】试题分析:由余弦定理得,又面积,因为成等差数列,所以,代入上式可得,整理得,解得,故选B.考点:余弦定理;三角形的面积公式.5、B【解析】根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为: 故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.6、A【解析】根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.7、D【解析】利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【详解】由于,有正弦定理可得: ,即由于在中,,,所以,联立 ,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.8、D【解析】由,根据正弦定理可得:,由角范围可得的范围,结合三角形的性质以及正弦函数的图像即可得到角的取值范围【详解】由于在中,有,根据正弦定理可得,由于,即,则,即由于在三角形中,,由正弦函数的图像可得:;故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.9、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.10、A【解析】根据对数函数以及指数函数的性质比较,b,c的大小即可.【详解】=log50.2<0,b=20.5>1,0<c=0.52<1,则,故选A.【点睛】本题考查了对数函数以及指数函数的性质,是一道基础题.二、填空题:本大题共6小题,每小题5分,共30分。
11、2【解析】由对数的运算性质可得到,故答案为2.12、.【解析】从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.13、【解析】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.14、4【解析】由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、【解析】如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.16、【解析】先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)由时,根据,利用一元二次不等式的解法,即可求解;(Ⅱ)由对任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【详解】(Ⅰ)由题意,当时,函数,由,即,解得或,所以不等式的解集为.(Ⅱ)因为对任意的恒成立,即,又由,当且仅当时,即时,取得最小值,所以,即实数的最大值为.【点睛】本题主要考查了一元二次不等式的求解,以及基本不等式的应用,其中解答中熟记一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的关键,着重考查了推理与运算能力,属于基础题.18、(I); (II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以 因为,所以 (II)因为令,,所以,因为对称轴, 根据二次函数性质知,当时,函数取得最大值.19、(1)证明见解析;(2)【解析】(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.。












