
IC驱动电流不足的解决方案.docx
6页IC驱动电流不足的解决方案导读:在电源设计中,工程师通常会面临掌握IC驱动电流不足的问题,或者面临由于栅极驱动损耗导致掌握IC功耗过大的问题,为缓解这一问题,工程师通常会采纳外部驱动器 引言: 工程师如何解决掌握IC驱动电流不足的问题 利用几个部件就可以构建一款独立驱动器 具有同步整流器的电源可使用变压器的绕组电压来驱动栅极 解决方案: 简洁的缓冲器可驱动2Amps以上的电流 FMMT618的更高电流驱动器可增加驱动力量 在电源设计中,工程师通常会面临掌握IC驱动电流不足的问题,或者面临由于栅极驱动损耗导致掌握IC功耗过大的问题为缓解这一问题,工程师通常会采纳外部驱动器半导体厂商(包括TI在内)拥有现成的MOSFET集成电路驱动器解决方案,但这通常不是成本的解决方案通常会选择价值几美分的分立器件 图1:缓冲器可驱动2Amps以上的电流 图1中的示意图显示了一个NPN/PNP放射跟随器对,其可用于缓冲掌握IC的输出这可能会增加掌握器的驱动力量并将驱动损耗转移至外部组件很多人都认为该特别电路无法供应足够的驱动电流。
如图2中hf曲线所示,通常厂商都不会为这些低电流器件供应高于0.5A的电流但是,该电路可供应大大高于0.5A的电流驱动,如图1中的波形所示就该波形而言,缓冲器由一个50Ω源驱动,负载为一个与1Ω电阻串联的0.01 uF电容该线迹显示了1Ω电阻两端的电压,因此每段接线柱上的电流为2A.该数字还显示MMBT2222A可以供应大约3A的电流,MMBT3906汲取2A的电流 事实上,晶体管将与其组件进行配对(MMBT3904用于3906,MMBT2907用于2222)这两个不同的配对仅用于比较这些器件还具有更高的电流和更高的hfe, 如FMMT618/718对,其在6A电流时具有100 的hfe(请参见图2)与集成驱动器不同,分立器件是更低成本的解决方案,且有更高的散热和电流性能 图2:诸如FMMT618的更高电流驱动器可增加驱动力量 图3显示了一款可使您跨越隔离边界的简洁缓冲器变量状况一个信号电平变压器由一个对称双极驱动信号来驱动变压器次级绕组用于生成缓冲器电力并为缓冲器供应输入信号二极管D1和D2对来自变压器的电压进行调整,而晶体管Q1和Q2则用于缓冲变压器输出阻抗以供应大电流脉冲,从而对连接输出端的FET进行充电和放电。
该电路效率极高且具有50%的占空比输入(请参见图3中较低的驱动信号),由于其将驱动FET栅极为负并可供应快速开关,从而化开关损耗这特别适用于相移全桥接转换器 假如您准备使用一个小于50%的上方驱动波形(请参见图3),那么就要使用缓冲变压器这样做有助于避开由于转换振铃引起的任意开启EFT低电平到零的转换可能会引起漏电感和次级电容,从而引发振铃并在变压器外部产生一个正电压 图3:利用几个部件您就可以构建一款独立驱动器 总之,分立器件可以关心您节省成本价值大约0.04美元的分立器件可以将驱动器IC成本降低10倍分立驱动器可供应超过2A的电流并且可以使您从掌握IC中获得电力此外,该器件还可去除掌握IC中的高开关电流,从而提高稳压和噪声性能 我们来了解一下自驱动同整流器并探讨何时需要分立驱动器来爱护同步整流器栅极免受过高电压带来的损坏抱负状况下,您可以利用电源变压器直接驱动同步整流器,但是由于宽泛的输入电压变量,变压器电压会变得很高以至于可能会损坏同步整流器 图4显示的是用于掌握同步反向拓扑中Q2传导的分立器件该电路可以让您掌握开启栅极电流并爱护整流器栅极免受高反向电压的损坏。
该电路可以用变压器输出端的负电压进行驱动12V输入与5V输出相比负电压值很大,从而引起Q1传导并短路电源FET Q2上的栅-源电压,快速将其关闭由于基极电流流经 R2,因此在加速电容C1上就有了一个负电压在此期间,侧 FET将会发生传导并在变压器磁化电感中存储能量侧FET关闭时,变压器输出电压在正电压范围摇摆Q2栅-源通过D1和R1被快速前向偏置C1放电时,D2对Q1基极-放射极连接进行爱护在侧FET再次开启之前,该电路会始终保持这种状态正犹如步降压转换器那样,输出电流会真正地对输出电容进行放电开启侧FET会衰减变压器二次侧上的电压并去除Q2的正驱动这种转换会导致明显的贯穿叠加侧 FET和 Q2 传导次数为了化该次数,当侧和二次侧FET均开启时,Q1将会尽快地短路同步整流器上的栅-源 图4:Q1 快速关闭同步反向 图5显示的是用于掌握同步正向转换器中Q1和Q4传导的分立驱动器在此特别的设计中,输入电压很宽泛这就是说两个FET的栅极可能会有超过其额定电压的状况,因此就需要一个钳位电路当变压器输出电压为负数,该电路就会开启Q4二极管D2和D4将正驱动电压限制在4.5V左右。
D1和D3将FET关闭, 该FET由变压器和电感中的电流进行驱动Q1和Q4将反向栅极电压钳位到接地在此设计中,FET 具有相当小栅极电感,因此转换特别快速较大的FET可能需要实施一个PNP晶体管对变压器绕组进行栅极电容去耦并提升开关速度为栅极驱动转换器Q2和Q3选择合适的封装至关重要,由于这些封装会消耗转换器中大量的电能(这是由于在 FET 栅极电容放电期间这些封装会起到线性稳压器的作用)此外,由于更高的输出电压R1和R2中的功耗可能也会很高 图5 :D2和D4限制了该同步正向驱动器中正栅极电压 结语 很多具有同步整流器的电源都可以使用变压器的绕组电压来驱动同步整流器的栅极,宽范围输入或高输出电压需要调整电路来爱护栅极 6Word版本。












